Browse > Article
http://dx.doi.org/10.6564/JKMRS.2012.16.2.162

Backbone 1H, 15N, and 13C resonance assignments and secondary structure prediction of SAV2228 (translation initiation factor-1) from Staphylococcus aureus  

Kim, Do-Hee (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
Jang, Sun-Bok (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
Lee, Bong-Jin (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.16, no.2, 2012 , pp. 162-171 More about this Journal
Abstract
SAV2228 has an OB (Oligomer-Binding)-motif which is frequently used for nucleic acid recognition. To characterize the activity of translation initiation factor-1 (IF-1) from Staphylococcus aureus, SAV2228 was expressed and purified in Escherichia coli. We acquired 3D NMR spectra showing well dispersed and homogeneous signals which allow us to assign 94.4% of all $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$ and $^{13}CO$ resonances. We could predict a secondary structure of SAV2228 using TALOS and CSI from NMR data. SAV2228 was consisted of one ${\alpha}$-helix and five ${\beta}$-sheets. The predicted secondary structure, ${\beta}-{\beta}-{\beta}-{\alpha}-{\beta}-{\beta}$, was similar to other bacterial IF-1, but it was not completely same to the eukaryotic one. Assigned NMR peaks and secondary structre prediction can be used for the study on interaction with nucleic acid in the future.
Keywords
SAV2228; NMR; Staphylococcus aureus; OB-motif; IF1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Bhateja, K. Purnapatre, S. Dube, T. Fatma, A. Rattan, Int. J. Antimicro. Ag. 27, 201 (2006).   DOI
2 K. Shimada et al., Jpn. J. Antibiot. 54, 331 (2001).
3 Z. A. Mirani, N. Jamil. JCPSP 20, 558 (2010).
4 P. D. Mauldin, C. D. Salgado, V. L. Durkalski, J. A. Bosso, Annals Pharmacother. 42, 317 (2008).   DOI
5 M. W. Pletz, O. Burkhardt, T. Welte, Eur. J. Med. Res. 15, 507 (2010).   DOI
6 K. Hiramatsu, L. Cui, M. Kuroda, T. Ito, Trends Microbiol. 9, 486 (2001).   DOI   ScienceOn
7 F. C. Tenover, J. W. Biddle, M. V. Lancaster, Emerg. Infect. Diseases 7, 327 (2001).   DOI
8 N. C. Kyrpides, C. R. Woese, Proc. Natl. Acad. Sci. U S A 95, 224 (1998).   DOI
9 A. G. Murzin, EMBO J. 12, 861 (1993).
10 M. Sette et al., EMBO J. 16, 1436 (1997).   DOI   ScienceOn
11 S.-B. Jang, C. Ma, P. C. Chandan, D.-H. Kim, B.-J. Lee, JKMRS 15, 69 (2011).
12 S.-B. Jang, C. Ma, S. J. Park, A.-R. Kwon, B.-J. Lee, JKMRS 13, 117 (2009).
13 F. Delaglio et al.. J. biomol. NMR 6, 277 (1995).
14 B. A. Johnson, Methods Mol. Biol. 278, 313 (2004).
15 D. S. Wishart, B. D. Sykes, J. biomol. NMR 4, 171 (1994).
16 G. Cornilescu, F. Delaglio, A. Bax, J. biomol. NMR 13, 289 (1999).   DOI   ScienceOn
17 G. N. Hatzopoulos, J. Mueller-Dieckmann, FEBS lett. 584, 1011 (2010).   DOI
18 W. Li, D. W. Hoffman, Prot. Sci. 10, 2426 (2001).   DOI
19 C. M. Fletcher, T. V. Pestova, C. U. Hellen, G. Wagner, EMBO J 18, 2631 (1999).   DOI
20 J. L. Battiste, T. V. Pestova, C. U. Hellen, G. Wagner, Mol cell 5, 109 (2000).   DOI   ScienceOn