• Title/Summary/Keyword: Eu^{3+}$ phosphor

Search Result 307, Processing Time 0.03 seconds

BGR mixture phosphor for white-light-emitting diode of liquid crystal display backlight

  • Lee, Sung-Hoon;Park, Je-Hong;Seo, Kwang-Il;Kim, Jong-Su
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1559-1560
    • /
    • 2007
  • BGR mixture phosphor pumped by 400 nm is developed for white-light-emitting diode of liquid crystal display backlight. White-emitting phosphor is prepared by mixing $Ba_2SiO_4:Eu^{2+}$ and $(Ba,Sr)_3MgSi_2O_8:Eu^{2+},Mn^{2+}$ phosphors.

  • PDF

Photoluminescence Properties of CaNb2O6:RE3+ (RE = Dy, Eu, Dy/Eu) Phosphors (CaNb2O6:RE3+ (RE = Dy, Eu, Dy/Eu) 형광체의 발광 특성)

  • Cho, Hyungchel;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.339-344
    • /
    • 2017
  • A series of $CaNb_2O_6:Dy^{3+}$, $CaNb_2O_6$:$Eu^{3+}$ and $CaNb_2O_6:Dy^{3+}$, $Eu^{3+}$ phosphors were prepared by solid-state reaction process. The effects of activator ions on the structural, morphological and optical properties of the phosphor particles were investigated. XRD patterns showed that all the phosphors had an orthorhombic system with a main (131) diffraction peak. For the $Dy^{3+}$-doped $CaNb_2O_6$ phosphor powders, the excitation spectra consisted of one broad band centered at 267 nm in the range of 210-310 nm and three weak peaks; the main emission band showed an intense yellow band at 575 nm that corresponded to the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ ions. For the $Eu^{3+}$-doped $CaNb_2O_6$ phosphor, the emission spectra under ultraviolet excitation at 263 nm exhibited one strong reddish-orange band centered at 612 nm and four weak bands at 536, 593, 650, and 705 nm. For the $Dy^{3+}$ and $Eu^{3+}$-codoped $CaNb_2O_6$ phosphor powders, blue and yellow emission bands due to the $^4F_{9/2}{\rightarrow}^6H_{15/2}$ and $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transitions of $Dy^{3+}$ ions and a main reddish-orange emission line at 612 nm resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions were observed. As the concentration of $Eu^{3+}$ ions increased from 1 mol% to 10 mol%, the intensities of the emissions due to $Dy^{3+}$ ions rapidly decreased, while those of the emission bands originating from the $Eu^{3+}$ ions gradually increased, reached maxima at 10 mol%, and then slightly decreased at 15 mol% of $Eu^{3+}$. These results indicate that white light emission can be achieved by modulating the concentrations of the $Eu^{3+}$ ions incorporated into the $Dy^{3+}$-doped $CaNb_2O_6$ host lattice.

New Red Phosphor with the Improved Color Purity for PDP Applications

  • Mho, Sun-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.257-259
    • /
    • 2002
  • As a new host material for a red phosphor for PDP applications, has studied (Y,Gd)$Al_3(BO_3)_4$ which gives non-centrosymmetric sites for $Eu^{3+}$ activators. Vacuum ultraviolet (VUV) excitation spectrum of new red phosphor (Y,Gd)$Al_3(BO_3)_4$:$Eu^{3+}$ has two broad bands. One band with the absorption edge at ca. 168 nm is the band-gap absorption of aluminoborate and the other broad band centered 240 nm is the charge transfer transition between $Eu^{3+}$ and the neighboring oxygen anions. The PL spectrum shows the strongest emission at 617 nm due to the electric dipole $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$, whose luminescent chromaticity is (0.67, 0.33).

  • PDF

The SrLiAl3N4:Eu2+ Phosphor Synthesized by the Raw Material Model Obtained by DFT Calculations

  • Park, Woon Bae
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.217-221
    • /
    • 2017
  • Improvement studies of existing phosphors are needed for use in light emitting diodes (LEDs). Among the phosphors discovered recently, the SLA ($SrLiAl_3N_4:Eu^{2+}$) is a phosphor that has a narrow width. It is now known as a good red phosphor that meets the industry's needs for warm white (color temperature ranging from 2700 to 4000 K) and high CRI (> 80). However, SLA phosphors are obtained from difficult synthetic methods. All commercially available phosphors should be derived from the general solid state synthesis method. The phosphors produced by difficult synthetic methods will inevitably fall out of price competitiveness and will be scrapped. This study succeeded in synthesizing SLA ($SrLiAl_3N_4:Eu^{2+}$) phosphors by using a general solid phase synthesis method based on the reaction energy obtained from DFT calculations. As a result, we found an optimal solid state synthesis method for SLA phosphors.

A Study on Photoluminance Properties of $(Y,Gd)BO_3:Eu^{3+}$ Phosphor Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무법으로 제조한 $(Y,Gd)BO_3:Eu^{3+}$ 형광체의 발광특성에 관한 연구)

  • Kim, Dae-Su;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.204-211
    • /
    • 2000
  • The $(Y,Gd)BO_3:Eu$ red phosphors for PDP application were synthesized by ultrasonic spray method and then their photoluminance properties were investigated under 147nm VUV irradiation. The precursor solution of acetates of Y, GD and Eu and boric acid diluted in water was sprayed using 1.7 MHz ultra-sonic sprayer into the reaction tube held at high temperature. The as-sprayed particles were amorphous phase having C-C and C-H bonds due to the insufficient thermal reaction during the pass along the tube. But the sprayed samples followed by heat treatment at $1100^{\circ}C$ had the same crystal structure and chemical composition as those samples followed by solid state reaction. It was found that the $(Y_{0.7}Gd_{0.3})_{0.95} BO_3:Eu_{0.05}^{3+}$ phosphor particles synthesized by spray at $500^{\circ}C$ and then heat treated at $900^{\circ}C$ had a spherical-like shape and fine particle size at $0.7{\mu\textrm{m}}$ having a narrow size distribution, while the phosphor particles made by solid state reaction was $3{\mu\textrm{m}}$ coarse and non-uniform size distribution. The emitting intensity under 147nm VUV excitation for $(Y_{0.7}Gd_{0.3})_{0.95}BO_3:Eu_{0.05}^{3+}$ phosphor prepared by spray method was found to be higher than those phosphor made by solid state reaction and the commercial $(Y,Gd)BO_3:Eu$ product.

  • PDF

The Effect of Addition of Gd, La into $YVO_{4}:Eu^{3+}$ Red Phosphor

  • Kang, Jong-Hyuk;Im, Won-Bin;Lee, Dong-Chin;Kim, Jin-Young;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1017-1020
    • /
    • 2003
  • The effect of doping Gd, La for Y into $YVO_{4}:Eu^{3+}$ red phosphor on its photoluminescence(PL) intensity has been investigated. $YVO_{4}:$Eu-based phosphors were prepared by solid-state reaction at temperature above $1200^{\circ}C$. Under UV excitation(254, 365 nm), it was measured that $YVO_{4}:Eu^{3+}$ was superior to a commercial red phosphor (Y,Gd)$BO_{3}:Eu^{3+}$ in terms of PL intensity and CIE color coordinates. When La, Gd were doped into $YVO_{4}:Eu^{3+}$, the change in the structure of the host material was observed. In result, when the ($Y{1_x}La_{x})VO_{4}:Eu^{3+}$ phosphors were excited by 365 nm excitation, its PL intensity was improved up to about 30 % for the case of x being $0.4{\sim}0.6$.

  • PDF

Luminescence of $Eu^{3+}$ and $Sm^{3+}$ Doped Potassium Tungstate Phosphors

  • Lee, Gwan-Hyoung;Kang, Shin-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1510-1513
    • /
    • 2005
  • The luminescent properties of $Eu^{3+}$ and $Sm^{3+}$ doped potassium tungstate phosphor were investigated. The $K_{4-3x}(WO_4)_2:Eu_x$, $Sm_y$ phosphor was produced by firing the mixed precursors, followed by re-firing with a flux. The re-firing process provided the clean surface to the particles. The excitation spectra showed that the strong absorption in the region of ultra violet light occurred due to the high europium doping concentration. The incorporation of europium to potassium tungstate was easier, compared to other host materials. The excitation spectra could be controlled by the small addition of samarium. The increase of energy absorption around 405nm was assigned to the $Sm^{3+}$ ions. The comparison between real x-ray diffraction and simulated one revealed that the crystal structure of $K_{4-3x}(WO_4)_2:Eu_x,Sm_y$ phosphor is monoclinic with a space group, C2/c.

  • PDF

Synthesis of $Y_2O-# : Eu$ Added the Group 1 or 2 Elements Using Complex-Polymerization and its Luminescent Properities (착제중합법에 의한 1, 2족 원소가 $Y_2O-# : Eu$ 형광체의 합성광 발광특성)

  • Park, Sang Mi;Kim, Chang Hae;Park, Joung Kyu;Park, Hee Dong;Jang, Ho G.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.236-241
    • /
    • 2001
  • Europium activated yttrium oxide ($Y_2O_3$ : Eu) is extensively applied to red phosphor for Flat Panel Display because of its high efficiency and the thermal and chemical stability. Flat Panel Display screen which have a high resolution and high efficiency needs to the phosphors of ideally small size spherical particle. In this study, we prepared a $Y_2O_3$ : Eu phosphor using polymeric precursor methods and investigated the codoping effect by introducing the group 1 or 2 elements to $Y_2O_3$ : Eu phosphor in view of improvement of luminance efficiency.

  • PDF

Effect of Deposition Temperature on the Optical Properties of La2MoO6:Dy3+,Eu3+ Phosphor Thin Films (증착 온도에 따른 La2MoO6:Dy3+,Eu3+ 형광체 박막의 광학 특성)

  • Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.387-392
    • /
    • 2019
  • $Dy^{3+}$ and $Eu^{3+}$-co-doped $La_2MoO_6$ phosphor thin films were deposited on sapphire substrates by radio-frequency magnetron sputtering at various growth temperatures. The phosphor thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy, ultraviolet-visible spectroscopy, and fluorescence spectrometry. The optical transmittance, absorbance, bandgap, and photoluminescence intensity of the $La_2MoO_6$ phosphor thin films were found to depend on the growth temperature. The XRD patterns demonstrated that all the phosphor thin films, irrespective of growth temperatures, had a tetragonal structure. The phosphor thin film deposited at a growth temperature of $100^{\circ}C$ indicated an average transmittance of 85.3% in the 400~1,100 nm wavelength range and a bandgap energy of 4.31 eV. As the growth temperature increased, the bandgap energy gradually decreased. The emission spectra under ultraviolet excitation at 268 nm exhibited an intense red emission line at 616 nm and a weak emission line at 699 nm due to the $^5D_0{\rightarrow}^7F_2$ and $^5D_0{\rightarrow}^7F_4$ transitions of the $Eu^{3+}$ ions, respectively, and also featured a yellow emission band at 573 nm, resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of the $Dy^{3+}$ ions. The results suggest that $La_2MoO_6$ phosphor thin films can be used as light-emitting layers for inorganic thin film electroluminescent devices.

Effect of Deposition Temperature on the Properties of Eu3+-doped MgMoO4 Phosphor Thin Films (증착 온도가 Eu3+ 이온이 도핑된 MgMoO4 형광체 박막의 특성에 미치는 영향)

  • Kang, Dongkyun;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • $Eu^{3+}$-doped $MgMoO_4$ phosphor thin films were deposited on quartz substrates by radio frequency magnetron sputtering with changing various growth temperatures. The effects of growth temperature on the structure, transmittance, optical band gap, and luminescence of the phosphor thin films were characterized. All the phosphor thin films, irrespective of growth temperature, showed a monoclinic structure with a main (220) diffraction peak. The thin film deposited at a growth temperature of $400^{\circ}C$ indicated an average transmittance of 90% in the wavelength range of 500 ~ 1100 nm and band gap energy of 4.81 eV. The excitation spectra of the phosphor thin films consisted of a broad charge transfer band peaked at 284 nm in the range of 230 ~ 330 nm and two weak peaks located at 368 and 461 nm, respectively. The emission spectra under ultraviolet excitation at 284 nm exhibited a sharp emission peak at 614 nm and several weak bands. All the phosphor thin films showed high asymmetry ratio values, indicating that $Eu^{3+}$ ions incorporated into the host lattice occupied at the non-inversion symmetry sites. The results suggest that the growth temperature plays an important role in growing high-quality phosphor thin films.