• Title/Summary/Keyword: Etoxazole

Search Result 11, Processing Time 0.023 seconds

Residual Patterns of Acaricides, Etoxazole and Flufenoxuron in Apples (살응애제 Etoxazole 및 Flufenoxuron의 사과 중 잔류양상)

  • Hwang, Jeong-In;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.61-68
    • /
    • 2014
  • Dissipation constants and half-lives of acaricides etoxazole and flufenoxuron in apples were calculated to establish their pre-harvest residue limits (PHRLs). The acaricides were sprayed on apples with single and triple doses based on safe use guidelines, and their residual patterns in the apple were interpreted using first order kinetics equation. The residual amounts of acaricides during the experimental period were below their maximum residue limits (MRL) for apple. The dissipation constants of acaricides in the apples were calculated at 0.0788 for etoxazole and 0.0319 for flufenoxuron corresponding to their biological half-lives; 8.8~21.7 days for etoxazole and 21.7~23.1 days for flufenoxuron. The PHRLs of acaricides in the apple showed the residual amounts of etoxazole and flufenoxuron at the harvesting date would be below their MRLs if their residual amounts were less than 0.87 and 0.88 mg/kg, respectively, at 7 days prior to harvesting the apples.

Analysis of Mitochondrial Gene Sequence in Etoxazole Resistant Two-Spotted Spider Mite, Tetranychus urticae (Etoxazole 저항성 점박이응애의 미토콘드리아 유전자 서열 분석)

  • Park, Sang-Eun;Koo, Hyun-Na;Yoon, Chang-Mann;Choi, Jang-Jeon;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most important pest species devastating many horticultural and ornamental crops and fruit trees. Difficulty in managing this mite is largely attributed to its ability to develop resistance to many important acaricides. Development of 3,700-folds resistance to etoxazole was found in the population of T. urticae collected from rose greenhouses in Buyeo, Chungnam Province in August 2000. This population has been selected for eleven years with etoxazole (over 500 times), and increased over 5,000,000-folds in resistance as compared with susceptible strain. Also, etoxazole-resistant strain was shown to be maternally inherited. The objective of this study was to determine whether resistance of T. urticae to etoxazole was linked with point mutations in the mitochondrial gene. DNA sequencing of cytochrome c oxidase subunit I (COX1), COX2, COX3, cytochrome b (CYTB), NADH dehydrogenase subunit 1 (ND1), ND2, ND3, ND4, ND5, and ND6 were analyzed by comparing two etoxazole-susceptible and etoxazole-resistant strains. As a result, differences were not detected between the nucleotide sequences of two strains within a mitochondrial gene.

Inheritance and Stability of Etoxazole Resistance in Twospotted Spider Mite, Tetranychus urticae, and Its Cross Resistance (점박이응애의 Etoxazole저항성 유전과 안전성 및 교차저항성)

  • 이소영;안기수;김철수;신상철;김길하
    • Korean journal of applied entomology
    • /
    • v.43 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • Development of 3,700 folds resistance to etoxazole was found in the population of twospotted spider mite, Tetranychus urticae, collected from rose greenhouses in Buyo, Chungnam Provience in August 2000. This population was selected for 3yr with etoxazole to get 5,000,000 folds increase in resistance as compared to susceptible (S) strain. The etoxazole resistance was stablized for 16 months under the condition of no acaricide application. Inheritance and cross resistance in etoxazole to some acaricides of the etoxazole resistance strain (R) were investigated. There were differences of susceptibility in the etoxazole concentration-mortality relationships between $F_1$, $F_2$ progenies obtained from reciprocal cross with the S and R strains (R$_{♂}$${\times}$S$_{♂}$${\times}$R$_{♂}$). Degrees of dominance were 0.98 and 0.98 in $F_1$ and $F_2$ progenies of R$_{♂}$${\times}$S$_{♂}$, and -0.97 and -0.68 in $F_1$ and $F_2$ progenies of S$_{♀}$${\times}$R$_{♂}$ respectively. Inheritance in $F_1$ and $F_2$ progenies of R$_{♀}$${\times}$S$_{♂}$ were complete dominant. However $F_1$ and $F_2$ progenies of S$_{♀}$${\times}$R$_{♂}$ were incomplete recessive. These results suggest that inheritance of etoxazole resistance is controlled by a complete dominance. The R strain exhibited cross resistance to acequinocyl and emamectin benzoates in adult females, and milbemectin, amitraz and pyridaben in eggs. However they showed negatively correlated cross-resistance to bifenazate, a carbazate acaricide. These results may indicate bifenazate could be useful for the control of etoxazole resistant T. urticae population.

A Study on the Influence of Corrosion of Metals and Plants through Aerosol Type Spraying of Agricultural Pesticide Products Containing Insecticide Ingredients (살충제 성분이 함유된 농약제품의 에어로졸 분사에 따른 금속 및 식물의 부식 영향에 관한 연구)

  • Kim, Jeong Hun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.8-14
    • /
    • 2018
  • Recently, serious problems occurred such as insecticide eggs, sanitary pads with carcinogens, radon(Rn) emitting beds in domestic. It had not been establishing the inspection system to evaluate safety and human harmfulness before occurring real accidents. This research was conducted to test preliminary experimental inspection for consideration of safety insensibility. The influence of corrosion of metals and plants was studied through aerosol type spraying of agricultural pesticide products coming into the market. These products contain primary three insecticide ingredients(Flufenoxuron, Etoxazole, Fipronil) in recent accidents. Visual examination, SEM-EDS and optical microscope were used for the analysis for corrosion effect. Results show that a lot of ingredients contain in the crop protection products, and various type of corrosion exist in the surface of metals and plants. Therefore, it is necessary to provide health warning and accurate range of use for crop protection products containing insecticide ingredients.

Susceptibility of the Predatory Mite, Neoseiulus californicus (Acari: Phytoseiidae) to Acaricides (사막이리응애의 살응애제에 대한 감수성)

  • Lee, Sung Min;Kim, Sang Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.418-423
    • /
    • 2015
  • Effects of 9 acaricides to the predatory mite, Neoseiulus californicus were evaluated. Seven of the acaricides tested, cyenopyrafen. spirodiclofen, spiromesifen, acequinocyl, bifenazate, flufenoxuron and cyflumetofen exhibited low toxicity to adult females and nymphs of N. californicus and had little effect on the reproduction and eclosion of eggs deposited by treated predators. Moreover, hatch percentage of N. californicus eggs was unaffected by exposure to these seven acaricides. Etoxazole did not significantly affect the survival and reproduction of adult female predators but caused very low eclosion in eggs laid by treated females and high egg mortality. Pyraclofos was extremely toxic to adult female predators and caused 100% mortality. Adult female predators survived on a diet of spider mites treated with cyenopyrafen. spirodiclofen, spiromesifen, acequinocyl, bifenazate, flufenoxuron and cyflumetofen and their fecundity was not substantially affected. Based on the results, cyenopyrafen. spirodiclofen, spiromesifen, acequinocyl, bifenazate, flufenoxuron and cyflumetofen are appeared to be promising candidates for use in integrated mite management program where N. californicus is the major natural enemy.

Toxicity of Pesticides to Minute Pirate Bug, Orius strigicollis Poppius (Hemiptera: Anthocoridae), a Predator of Thrips (총채벌레의 천적인 으뜸애꽃노린재에 대한 농약 독성)

  • Ahn Ki-Su;Lee Ki-Yeol;Kang Hyu-Jung;Park Sung-Kyu;Kim Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.43 no.3 s.136
    • /
    • pp.257-262
    • /
    • 2004
  • Toxicities of 51 pesticides (25 insecticides, 11, acaricides, 11 fungicides and 4 adjuvants) commonly used to control greenhouse insect, mite, and disease pests were evaluated to minute pirate bug, Orius strigicollis nymphs and adults at the recommended concentration. Among 25 insecticides tested, fipronil, lufenuron, acetamiprid+fipronil, $\alpha$-cypermethrin+flufenoxuron and buprofezin + amitraz showed low toxicity to O. strigicollis. Among acaricides, acequinocyl, bifenazate, chlorfenapyr, etoxazole, fenpyroximate, flufenoxuron, milbemectin, spirodiclofen and tebufenpyrad showed low toxicity to O. strigicollis. All fungicides and adjuvants tested were very low toxicity. It may be suggested from these results that five insecticides, nine acaricides, eleven fungicides and four adjuvants could be incorporated into the integrated thrips management system with O. strigicollis in greenhouses.

Evaluation of Susceptibility to 10 kinds of Acaricides Against Two-Spotted Spider Mites (Tetranychus urticae) in Hooker Chives (삼채에 발생하는 점박이응애에 대한 10종의 살비제 감수성 평가)

  • Kang, Juwan;Kim, Chihyun;Shin, Hocheol;Lee, Gunsik;Kim, Taehwa;Park, Jung-Joon
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • The susceptibility and control efficacy evaluated for 10 kinds of commercialized acaricides, to obtain basic data for the chemical control strategy of Two-spotted spider mite (Tetranychus urticae) in Hooker chives. The susceptibility evaluation of T. urticae female adults, Abamectin EC, Pyflubumide SC, Cyenopyrafen SC, and Acequinocyl SC showed 100% mortality, and Pyflubumide SC, Acequinocyl SC, and Etoxazole SC showed zero hatching rate, i.e. 100% mortality of eggs. As a result of evaluating the field test for Abamectin EC, Pyflubumide SC, Cyenopyrafen SC, Cyflumetofen SC, and Acequinocyl SC, which had excellent mortality in the laboratory conditions, all treatment plots showed more than 90.3% control efficiency on after 7 days.

Comparative toxicity of some pesticides to the predatory mites, Amblyseius womersleyi A. eharai(Acarina: Phytoseiidae) and the two-spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae) (긴털이리응애, 긴꼬리이리응애와 점박이응애에 대한 여러 농약의 독성비교)

  • Seo, Sang-Gi;Kim, Sang-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.40-47
    • /
    • 2000
  • The comparative toxicity of ten acaricides, seven insecticides and five fungicides to the two-spotted spider mite, Tetranychus urticae and its predators, Amblyseius womersleyi and A. eharai was evaluated by a leaf spray bioassay. Five of the acaricides tested, bifenazate, etoxazole, acequinocyl, flufenoxuron and chlorfenapyr were much less toxic to adult females of A. womersleyi and A. eharai than to T. urticae adult females. A. womersleyi adult females treated with five acaricides produced $52{\sim}93%$ as many eggs as untreated adult females. And A. eharai adult females treated with five acaricides laid $54{\sim}73%$ as many eggs as untreated adult females. The remaining acaricides showed high toxicity to adult females of A. womersleyi and A. eharai. All the insecticides tested were less toxic to T. urticae adult females than to adult females of A. womersleyi and A. eharai. However, tebufenozide and diflubenzuron did not significantly affect the survival and reproduction of adult females of A. womersleyi and A. eharai. All the fungicides tested showed low mortality (${\leq}24%$) to adult females of predatory mites. However, benomyl had significant effect on the reproduction of adult females of A. womersleyi and A. eharai. Four acaricides (bifenazate, acequinocyl, flufelloxuron and chlorfenapyr) were much less toxic to eggs of A. womersleyi and A. eharai than to T. urticae eggs. However, etoxazole caused relatively low hatchability ($58{\sim}62%$) of eggs of A. womersleyi and A. eharai. All the insecticides and fungicides tested did not significantly affect the hatch of eggs of predatory mites. It may be suggested from these results that four acaricides, two insecticides and four fungicides described could be Incorporated into the integrated mite management system with A. womersleyi and A. eharai in pear orchard.

  • PDF

Evaluation of Acute and Residual Toxicity of Insecticides Registered on Strawberry against Honeybee (Apis mellifera) (딸기에 등록된 살충제의 꿀벌에 대한 급성 및 엽상잔류독성)

  • Ahn, Ki-Su;Yoon, Changmann;Kim, Ki-Hyun;Nam, Sang-Young;Oh, Man-Gyun;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.185-192
    • /
    • 2013
  • This study was performed to evaluate the spray toxicity and leaf residual toxicity of 52 kinds of insecticides registered for strawberry against adult honeybee Apis mellifera. According to the IOBC standard, the acute toxicity by spraying showed below 30% was classified as non-toxic. Among tested insecticides, 32 insecticides (flonicamid, lufenuron, novaluron, three kinds of acetamiprid, thiacloprid, milbemectin, acequinocyl, TBI-1, two kinds of chlorfenapyr, chlorfluazuron, cyenopyrafen, cyfumetofen, etoxazole, fenpyroximate, flubendiamide, flufenoxuron, hexythiazox, metaflumizone, two kinds of methoxyfenozide, DBB-2032, pyridalyl, spiromesifen, tebufenpyrad, teflubenzuron, acetamiprid + methoxyfenozide, acrinathrin + spiromesifen, bifenazate + spiromesifen, cyenopyrafen + flufenoxuron) did not show any toxic effect, it is thought to be safe. And the others (20 insecticides) showed higher toxicity to honeybee. Insecticides which showed acute toxicity higher than 90% was selected and tested the residual toxicity. All insecticides except emamectin benzoate EC, and indoxacarb SC showed 100% mortality at one day after treatment (DAT). However, the toxicities of emamectin benzoate, indoxacarb SC, and abamectin did not show until 3, 7, 14 DAT, respectively. Nine insecticides such as indoxacarb WP, thiamethoxam WG, abamectin + chlorantraniliprole SC, acetamiprid + etofenprox WP, acetamiprid + indoxacarb WP, bifenthrin + clothianidin SC, bifenthrin + imidacloprid WP, bifenazate + pyridaben SC, chlorfenapyr + clothianidin SC showed over 90% residual toxicity until 31 Day. In pouring treatment, thiamethoxam WG showed 76.9% mortality at 28 DAT and 50.0% mortality at 31 DAT. After 35 days, thiamethoxam WG showed no effect to honeybee. Bifenthrin + clothianidin SC and tefluthrin + thiamethoxam GR showed 57.1 and 80.0% mortality at 24 DAT, respectively. In spraying treatment, thiamethoxam WG and bifenthrin+clothianidin SC showed very high residual toxicity with 100% mortality in thirty-five DAT. After spraying treatment with thiamethoxam WG, bifenthrin+clothianidin SC, bifenthrin + imidacloprid WP, thiamethoxam WG showed 100% residual toxicity until 21 DAT and there was no activity after 28 DAT. Bifenthrin+clothianidin SC and bifenthrin+imidacloprid WP showed very high residual toxicity until 49 DAT.