• Title/Summary/Keyword: Ethylene scavenger

Search Result 7, Processing Time 0.019 seconds

Effect of Gas Absorbents on Quality Attributes and Respiration Characteristics of Mature-Green Mume (Prunus mume Sieb. et Zucc) Fruits during Storage at Ambient Temperature (가스흡착제 처리가 상온 유통 청매실의 품질 및 호흡특성에 미치는 영향)

  • Cha, Hwan-Soo;Hong, Seok-In;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1036-1042
    • /
    • 2002
  • During storage at $25^{\circ}C$, the effect of gas absorbents, such as carbon dioxide scavenger, ethylene absorber, and their combinations, on respiration characteristics and quality attributes of mature-green Mume fruits packaged in $30\;{\mu}m$ low density polyethylene (LDPE) film was examined. Changes in quality attributes of the fruits were observed in terms of weight loss, titratable acidity, pH, fish firmness, color, water-soluble solid, and chlorophyll contents. In the presence of ethylene absorber $(KMnO_4)$, the physiological injury was remarkably suppressed, and there was no significant injury in Mume fruits at $25^{\circ}C$ for 10 days. Yellowing and softening were also noticeably reduced by the combination of plastic film packaging and inclusion of ethylene absorber. The respiration rate was slower in fruits sealed with ethylene absorber than in those with absorbent-free packaging. Using ethylene absorber, levels of oxygen and carbon dioxide were maintained at 2-3 and 7-8%, respectively, during storage at $25^{\circ}C$ for 10 days. The addition of carbon dioxide scavenger $(Ca(OH)_2)$, negatively affected the quality attributes and respiration characteristics of the fruits. Overall results showed that ethylene removal by gas absorbent in the film packages significantly prolonged the shelf life of the fruits at ambient temperature.

Changes in Mineral and Pectic Substances of Korean Mature-Green Mume (Prunus mume Sieb. et Zucc) Fruits Packaged in Plastic Films with Gas Absorbents during Storage (가스 제거제 첨가에 따른 필름 포장 청매실의 저장 중 무기질 및 펙틴 성분 변화)

  • Cha, Hwan-Soo;Hong, Seok-In;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.149-154
    • /
    • 2003
  • Changes in mineral (Ca, Mg) contents and pectic substances of mature-green 'Nanko' Mume fruits hermetically packaged in 0.03 mm low density polyethylene (LDPE) films with and without gas absorbents were examined during storage at $25^{\circ}C$ for 10 days. Each packaging contained 10 g $Ca(OH)_2$ as a carbon dioxide scavenger, 30 g $KMnO_4$ as an ethylene scrubber or their mixture. In the presence of the ethylene scrubber, losses in mineral contents of alcohol insoluble solids and water soluble pectin were remarkably suppressed, whereas no significant difference was observed in the Ca content between the fresh fruit and those stored for 10 days. Fruits packaged with the ethylene absorbent retained higher amount of pectic substances than those with other packaging treatments. Degradation of the pectic substances into small molecules was also noticeably reduced when the ethylene scrubber was used. Overall results showed that the combination of the gas permeable film and the ethylene absorbent could be applied to mature-green Mume fruits as an effective packaging method to retard the texture softening during storage at the ambient temperature.

Current Status of Legal Regulations Regarding Gas- and Moisture-removing Active Packaging for Food: A Review (식품용 가스 및 수분 제거 활성포장 사용 및 법정 규정에 대한 현황)

  • Kim, Dowan;Oh, Jae-Min;Lee, Soonho;Kim, Hyun-Ah;Hwang, Joungboon;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Due to the increasing consumer demands for the safety, shelf life, and quality of food, the application and development of active packaging in the food and packaging industry have been improved. According to the standards and specifications of the Republic of Korea for utensils, containers, and packages, the function of active packaging is to remove or alleviate factors that degrade food quality. Although extensive reviews regarding the development and commercialization of active packaging have been conducted, the legal regulations and safety assessments concerning active packaging have rarely been examined. This review provides information regarding the definition, structure, components, operational mechanisms, and applications for active packaging that actively removes oxygen, moisture, carbon dioxide, and ethylene. Furthermore, the legal regulations and research results related to the development of test methods for safety assessments of active packaging are investigated.

Comparison of Paraquat Actions on Oxygen Radical Generation and Lipid Peroxidation between Submitochondrial Particle and Microsome of Mouse Liver (Paraquat에 의한 산소 Radical 생성 및 지질과산화 작용의 Mouse 간 Submitochondria Particle과 Microsome에서의 비교)

  • Choi, Jung-Hwan;Kim, Yong-Sik;Park, Jong-Hwan;Chung, Myung-Hee;Yunn, Chong-Ku
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1991
  • In order to evaluate a potential role of mitochondria in the mediation of toxicity of paraquat (PQ), submitochondrial particle and microsome of mouse liver were compared by oxygen radical generation and lipid peroxidation. With NADH in submitochondrial particle and NADPH in microsome as electron donors, PQ stimulated production of superoxide anion and $H_2O_2$ in both fractions. Under the same conditions, PQ enhanced the generation of ethylene from methional suggestiong stimulation of OH production by PQ. But these effects by PQ were somewhat lower in submitochondrial particle than in microsome. In addition, lipid peroxidation(measured as MDA production) was stimulated by PQ in both fractions. The stimulation of lipid peroxidation in both fractions seemed to occur by the same mechanism probably through perferryl ion. This was supported by the following findings: i) The lipid peroxidation in both fractions was partially inhibited by SOD and completely inhibited by DETAPAC(an iron chelator) but not by catalase or OH scavenger. ii) Addition of $ADP-Fe^{3+}$ further increased PQ-induced lipid peroxidation but decreased ethylene production from methional suggesting no correlation between OH production and lipid peroxidation. The redox-cycling of PQ in mitochondria appeared to be linked to NADH dehydrogenase, not to CoQ since all of the observed stimulations by PQ in submitochondrial particle were inhibited by p-hydroxymercuribenzoate(a NADH dehydrogenase inhibitor) but not affected by other respiratory chain blockers. The above results demonstrate that redox-cycling properties of PQ leading to oxygen radical generation and lipid peroxidation can also occur in mitochondria in the same manner as in microsome. Therefore, the observed actions of PQ in mitochondria suggest that mitochondria may also contribute to toxicity of this drug in vivo.

  • PDF

Role of Ascorbic Acid in the Depolymerization of Hyaluronic Acid by $Fe^{++}$ and $H_2O_2$ ($Fe^{++}$$H_2O_2$에 의한 hyaluronic acid 분해에 있어서 ascorbic acid의 역할)

  • Lee, Jung-Soo;Chung, Myung-Hee;Lim, Jung-Kyoo;Park, Chan-Woong;Cha, In-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.62-77
    • /
    • 1985
  • In tile Iron-catalyzed Haber-Weiss reaction to produce OH., the requirement for $O^{-}_{2}{\cdot}$ is only to reduce $Fe^{+++}$. Possibly, the role of $O^{-}_{2}{\cdot}$ can be replaced by other reducing agents. Ascorbate is one of them in biological system. In the present study, the ability of ascorbate to produce $OH{\cdot}$ in the presence of $Fe^{++}$ and $H_2O_2$ was investigated by observing the degradation of hyaluronic acid and ethylene production from methional. Ascorbate stimulated the degradation of hyaluronic by $Fe^{++}$ and $H_2O_2$. That was confirmed by both viscosity change and gel-permeation chromatographic analysis. The observed degradation was almost completely prevented by catalase and $OH{\cdot}$ scavengers. In support of the above results, ascorbate enhanced the prouction of ethylene from methional in the presence of $Fe^{++}$ and $H_2O_2$. Other reducing agents (cysteine, glutathione, NADH and NADPH) showed similar activities to ascorbate in the degradation of hyaluronic acid and ethylene production. But no stimulatory effects were observed with their oxidized forms such as NAD and NADP. Thus, it appears that reduction of the metal ion was needed for $OH{\cdot}$ production. Among the metal ions tested, $Fe^{++}$ showed most potent catalytic action in the production of $OH{\cdot}$ The results obtained support that ascorbate can substitute $O^{-}_{2}{\cdot}$ in the metal-catalyzed reactions, particularly with $Fe^{++}$ by which $OH{\cdot}$ is produced with $H_2O_2$. The significance of the ascorbate-dependent production of $OH{\cdot}$ was considered with respect to possible role of ascorbate in the damage of inflamed joints.

  • PDF

Effect of Uniconazole and Silver Thiosulfate Treatment on Reduction of Ozone Injury in Snap Bean Plants (Uniconazole과 Silver Thiosulfate 처리(處理)가 강남콩의 오존피해(被害) 경감(輕減)에 미치는 효과(效果))

  • Ku, Ja Hyeong;Won, Dong Chan;Cho, Jeong Hee;Shin, Dae Shik
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.161-169
    • /
    • 1992
  • Studies were conducted to examine the effects of single or combined treatment of uniconazole [(E)-1-(4-chlorophenyl)-4, 4-dimethyl 2(1, 2,-4-triazol-1-yl)-1-penten-3-ol)] and silver thiosulfate (STS) on reducing ozone injury to snap beans (Phaseolus vulgaris L. 'Strike'). Two weeks after seeding, plants were given a soil drench of uniconazole(XE-1019) solution at concentrations of 0.001, 0.005 and 0.025 mg/pot, and then two days prior to ozone fumigation, 0.3 and 0.6 mM STS containing 0.01% Tween-20 were also sprayed. Uniconazole was effective in providing protection against ozone injury through increase activities of free radical scavengers such as superoxide dismutase (SOD) and peroxidase (POD) as well as the increase of chlorophyll content and stomatal resistance resulted from plant growth retardation. The phytoprotective effects of STS seemed to be related to its properly of blocking the ethylene action and increasing activities of SOD and POD. Even at low concentrations, a combined treatment with uniconazole drench, STS spray significantly reduced ozone injury compared to single application.

  • PDF