• Title/Summary/Keyword: Ethylene Glycol

Search Result 1,171, Processing Time 0.033 seconds

In Vitro/In Vivo Development of Vitrified Mouse Zygotes and Chromosome Analysis of Offspring (초자화 동결된 생쥐 1-세포기배의 체외/체내 발달과 산자의 염색체 분석)

  • 김묘경;김은영;이현숙;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.1
    • /
    • pp.47-52
    • /
    • 1997
  • The objective of this study was to investigate the in vitro / in vivo embryonic development after vitrification of mouse zygotes and the chrom osomal normality of delivered live young after embryo transfer. Mouse IVF zygotes were cryopreserved by vitrification using vitrification solution, EFS40 (40% ethylene glyc이, 30% Ficoll a and 0.3 M sucrose in phosphate buffer saline c containing 10% FBS ) . After mouse zygotes were exposed to EFS40 at 25"C for 30 sec., they were immediately plunged into LN$_2$. Vitrified thawed mouse zygotes were cultured upto bIastocysts in M16 for 4 days. The rates of in vitro development were 71.5% under this condition. Cultured blastocysts were transferred to recipients (3 day of pseudopregnant) on one or both uterus horns (6-8 embryos per a uterus horn). And all recipients were allowed to produce litters. The results obtained in these experiments were summarized as follows: The pregnancy rates and in vivo survival rates, live fetus rates, for vitrified zygotes (80.0, 39.6%) were not significantly difference in those of control zygotes (77.8%, 50.0%). Also, all of live-born young mice were chromosomally normal (n=40). This results suggested that proposed rapid vitrification procedures can be effectively use in 1-cell mouse zygotes cryopreservation.

  • PDF

Identification of Heat Stress-related Proteins and Low Molecular Weight HSP Expressed in Stem Tissues of Rice Plants by Proteomic Analysis (프로테옴 분석법에 의한 벼 줄기에서 발현하는 고온 스트레스 관련 단백질 및 저분자량 Heat Shock Protein의 분리 동정)

  • Lee, Dong-Gi;Kim, Kyung-Hee;Kim, Yong-Gu;Lee, Ki-Won;Lee, Sang-Hoon;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • In order to investigate rice stem proteome in response to heat stress, rice plants were subjected to heat treatment at 42$^{\circ}C$ and total soluble proteins were extracted from stem tissues, and were fractionated with 15% PEG (poly ethylene glycol) and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). After staining of 2-DE gels, 46 of differentially expressed proteins were extracted, digested by trypsin, and subjected to matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Proteins were identified through database search by using peptide mass fingerprints. Among them, 10 proteins were successfully identified. Seven proteins were up- and 3 proteins were down-regulated, respectively. These proteins are involved in energy and metabolism, redox homeostasis, and mitochondrial small heat shock proteins. The identification of some novel proteins in the heat stress response provides new insights that can lead to a better understanding of the molecular basis of heat-sensitivity in plants, and also useful to molecular breeding of thermotolerant forage crops.

Effects of Various Chelating Agents on Accumulation of Germanium in Ginseng Adventitious Roots in Submerged Culture (킬레이트제가 액체배양 중 인삼 부정근의 게르마늄 축적에 미치는 영향)

  • Chang, Eun-Jung;Oh, Hoon-Il
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.154-158
    • /
    • 2007
  • In order to increase the content of germanium in ginseng adventitious roots, the effects of chelating agents on germanium content and root growth were investigated in the submerged cultures of ginseng adventitious roots. Chelating agents such as citric acid, oxalic acid, phosphoric acid, EDTA (Ethylenediamine tetraacetic acid) or EGTA (Ethylene glycol-bis $({\beta}-aminoethylether)-tetraacetic$ acid) were administrated in the submerged culture of ginseng root containing 50 ppm $GeO_2$. After 6 weeks of cultivation, fresh weight, germanium and saponin contents in the roots were analyzed. Among chelating agents, addition of 1.0mM phosphoric acid was found to be best for germanium accumulation. Under this condition, germanium content increased 1.4 times as compared to that of the control. The germanium content in the adventitious roots also increased with addition of EDTA or EGTA, while they inhibited the growth of ginseng adventitious root. Citric and oxalic acids were not effective for increasing germanium content in adventitious roots. As the results, it suggests that the phosphoric acid can be proved as the optimal agent for the enhancement of germanium accumulation in ginseng adventitious roots. These results can be served as a guideline for the mass production of ginseng adventitious roots containing germanium by large-scale production.

Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain (주사슬에 곁사슬기를 갖는 폴리히드록시아미드의 물성 및 난연특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.478-485
    • /
    • 2006
  • Physical properties and flammability of polyhydroxyamides (PHAs) haying poly (ethylene-glycol) methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter (PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of $276{\sim}396^{\circ}C$ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with in-creasing molecular weight of MPEG. In case of M-PHA 2 annealed at $290^{\circ}C$, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to $856^{\circ}C$ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of $129.3{\sim}235.1kJ/mol$, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.

Electrospraying of Micro/Nano Particles for Protein Drug Delivery (단백질 약물 전달을 위한 마이크로/나노 입자의 전기분무 제조법)

  • Yoo, Ji-Youn;Kim, Min-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • The control of the surface energy by electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. The advantages are quite helpful to improve the stability of protein drug and control its release. Herein, the nano-encapsulation of protein drugs using electrospraying was investigated. Albumin as a model protein was processed using uniaxial and co-axial electrospraying, and chitosan, polycaporlactone (PCL), and poly (ethylene glycol) (PEG) were used as encapsulation materials. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance of electrical potential gradient, etc were measured to obtain the maximum efficiency. In the chitosan systems, mean particles size decreases as flow rate and the distance between nozzle and the collecting part decreases. In the uniaxial technique of the PCL systems, mean particles size decreases as flow rate decreases. In the coaxial technique of the PCL systems, it was found that the particles size gets larger under the application of the higher ratio of inner-to-outer liquid flow rates. The primary particles formed out of an electrospraying nozzle showed narrow particle size distribution, but once they arrived to the collecting part, aggregation behavior was observed obviously. Efficient nano-encapsulation of albumin with PCL, PEG, and chitosan was conveniently achieved using electrospraying at above 12 kV.

Evaluation of Propylenecarbonate/water Physical Absorbents and its Application in Membrane Contactors for CO2/CH4 Separation (CO2/CH4 분리를 위한 프로필렌카보네이트/물 흡수제 특성 평가 및 막접촉기의 적용)

  • Park, Ahrumi;Kim, Seong-Joong;Lee, Pyung Soo;Nam, Seung Eun;Park, You In
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.126-134
    • /
    • 2016
  • To produce renewable biomethane from biogas, the properties of physical absorbents such as water, methanol, 1-methyl-2-pyrrolidone (NMP), poly(ethylene glycol) dimethylether (PEGDME), and propylene carbonate (PC) were studied, and PC was applied to membrane contactor systems. Among physical absorbents, PC exhibited a high contact angle of $58.3^{\circ}$ on polypropylene surface, and a PC/water mixture (5 wt%) increased the contact angle to $90^{\circ}$. Furthermore, the PC/water mixture presented higher $CO_2$ absorption capacities (0.148-0.157 mmol/g) than that of water (0.121 mmol/g), demonstrating a good property as an absorbent for membrane contactors. Actual operations in membrane contactors using the PC/water mixture resulted in $CO_2$ removal of 98.0-97.8% with biomethane purities of 98.5-98.3%, presenting a strong potential for biogas treatment. However, the PC/water mixture yielded moderate improved in $CO_2$ removal and methane recovery, as compared with water in the membrane contactor operation. This is originated from insufficient desorption processes to reuse absorbent and low $CO_2$ flux of the PC/water absorbent. Thus, it is requiring optimizations of membrane contactor technology including development of absorbent and improvement of operation process.

Electrochemical Detection of Uric Acid using Three Osmium Hydrogels (세개의 오스뮴 고분자를 이용한 요산의 전기화학적 측정방법)

  • Jeon, Won-Yong;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Screen printed carbon electrodes (SPCEs) with immobilized osmium-based hydrogel redox polymer, uricase and PEGDGE can be used to apply uric acid electrochemical detecting. The osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium compounds. The synthesized poly-osmium hydrogel complexes are described as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dmo-bpy)_2Cl]^{+/2+}$. The different concentrations of uric acid were measured by cyclic voltammetry technique using enzyme-immobilized SPCEs. The prepared SPCEs using PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$ showed no interference from common physiologic interferents such as ascorbic acid (AA) or glucose. The resulting electrical currents at 0.33 V vs. Ag/AgCl displayed a good linear response with uric acid concentrations from 1.0 to 5.0 mM. Therefore, this approach allowed the development of a simple, point of care in the medical field, disposable electrochemical uric acid biosensor.

Synthesis and Magnetic Properties of Nanosized Ce-substituted Yttrium Iron Garnet Powder Prepared by Sol-gel Method (졸-겔법에 의한 Cerium 치환 Nanosize YIG 분말의 합성 및 자기적 특성)

  • 장학진;김광석;윤석영;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1008-1014
    • /
    • 2001
  • Nanosize YIG powders added by Cerium which is exellent element in magneto-optical effect were synthesized by Sol-Gel method using Ethylene Glycol solvent. In 120 to 150 minute reaction time, stable sol solution which showed no change in viscosity, pH, and aging time was obtained. Monolithic YIG was synthesized at 80$0^{\circ}C$ with DTA and XRD measurement and its lattice parameter had a tendency to increase from 12.3921 $\AA$. Increasing annealing temperature from 80$0^{\circ}C$ to 105$0^{\circ}C$, average particle size was in the range of 40 nm to 330 nm. Saturation magnetization (M$_{s}$) value was increased from 18.37 to 21.25 emu/g due to enhancement of YIG crystallity and decreasing of orthoferrite phase. On the other hand, coercivity (H$_{c}$) value increased up to 90$0^{\circ}C$ and then decreased above 90$0^{\circ}C$. With increasing Ce addition, coercivity was almost not changed but saturation magnetization value was maximum at Ce 0.1 mol% and then decreased because of increasing a orthoferrite amount. Also, curie temperature (T$_{c}$) of YIG were not changed with Ce addition.ion.

  • PDF

Potential of Coal Gasification Slag as an Alkali-activated Cement (석탄가스화 복합발전 슬래그의 알칼리 활성 시멘트로서의 가능성)

  • Kim, Byoungkwan;Lee, Sujeong;Chon, Chul-Min;Choi, Hong-Shik
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.38-47
    • /
    • 2018
  • Integrated gasification combined cycle (IGCC) is a next generation energy production technology that converts coal into syngas with enhanced power generation efficiency and environmental performance. IGCC produces almost coal gasification slag as the solid by-product. IGCC slag is generated about 140,000 tons for a year although recycling of it is still in the early stages. We evaluated the potential of IGCC slag which is generated from a pilot plant in South Korea as an alkali-activated cement. Samples which were activated with the combined activator of sodium silicate solution and caustic soda had an average compressive strength of 4.5 MPa, showing expansion. Expansion of the alkali-activated slag was presumed to be caused by free CaO in the slag, although it was not detected by the ethylene glycol method. Samples that were activated with the combined activator of sodium aluminate and caustic soda had an average compressive strength of 10 MPa. Hydroxy sodalite and $C_3AH_6$ were found to be the new crystalline phases. IGCC slag can be used as an alkali-activated material, but the strength performance should be improved with proper mix design approach to calculate optimum proportions which can alleviate the expansion issue at the same time.

The Cytoskeletal and Chromosomal Constitution of Vitrified Immature Mouse Oocytes (초자화동결된 생쥐 미성숙란의 세포골격과 염색체성상)

  • Park, Se-Pill;Yi, Bong-Kyung;Kim, Eun-Young;Nam, Hwa-Kyung;Lee, Keum-Sil;Yoon, San-Hyun;Chun, Kil-Saeng;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.363-368
    • /
    • 1999
  • This study was to confirm whether the vitrification method using EFS40 freezing solution has detrimental effect on the cytoskeleton and chromosome constitution of the immature mouse oocytes by indirect immunocytochemistry and chromosome analysis. Immature mouse oocytes were vitrified using EFS40 (40% EG, 18% ficoll, 0.5 M sucrose diluted in M2 medium), thawed and then survived oocytes were in vitro matured for 16 hr. When the microtubule morphology and micro filament distribution in vitrified-thawed immature mouse oocytes were examined, normal percentage of two cytoskeleton in vitrified group (93.9 and 100.0%) was not significantly different from that in control (100.0 and 100.0%) and exposed group (94.4 and 100.0%). The rate of oocytes containing a normal chromosome number in vitrified group was 65.8%, this result was not significantly different from that in control (79.6%) and exposed group (69.0%). These results indicated that exposure to cryoprotectant or freezing has not effect on the alteration of cytoskeleton morphology and the chromosome constitution of mouse oocytes and that our vitrification methods using EFS40 freezing solution was suitable for the cryopreservation of immature mouse oocytes.

  • PDF