• Title/Summary/Keyword: Ethernet Communication

Search Result 349, Processing Time 0.026 seconds

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1689-1690
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Development of Log Processing Module and Log Server for Ethernet Shipboard Integration Networks (이더넷 기반 선박 통합 네트워크를 위한 로그 처리 모듈 및 로그 서버의 개발)

  • Hwang, Hun-Gyu;Yoon, Jin-Sik;Seo, Jeong-Min;Lee, Seong-Dae;Jang, Kil-Woong;Park, Hyu-Chan;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.331-338
    • /
    • 2011
  • Objectives of shipboard integration networks are to exchange and manage integrated information. Shipboard integration networks use UDP(User Datagram Protocol) multicast for the exchange of information. However, such information can be missed or damaged because UDP can't guarantee reliability. The standard of shipboard integration networks defines error log functions for the missed or damaged information. In this paper, we analyze internal and external log functions. The internal log function records errors internally, and the external log function sends error messages to a log server and records them in a database. We also develop a log processing module and log server for the external log function.

Long Distance Transmission System of Tag's ID in RFID System (전자인식 시스템에서 택 ID의 원거리 전송 시스템)

  • Kim, Dong-Hun;Jo, Hyeong-Guk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.63-67
    • /
    • 2009
  • In RFID system, Tag's Identification data is processed in host computer by application program. Example of application program is parking administration program, library state program etc.. Tag's ID that is recognized in reader is inputted to the Host computer. Application program of computer searches data in DB of computer such as Tag ID. After finding the same ID, host computer send to control command to driver H/W in accordance with application purpose. But, It need to confirm in long distance whether achievement process is acted normally. There will be the 2 methods, when we monitors the process in long distance. One is wired monitoring system, another is wireless monitoring system. Among wire method, internet communication network is useful. RFID system manufacture first in this treatise. RFID system Embody using EM4095 chip that is doing 125KHz by carrier wave. Tag's characteristic ID is sent in remote place through module that use W3100A chip. This system Manufacture, and data send-receive confirmed using simple application program. Reception confirm by result, and pictures show by whole system and each part. And a control program explained of each part.

  • PDF

Design and Implementation of Initial OpenSHMEM Based on PCI Express (PCI Express 기반 OpenSHMEM 초기 설계 및 구현)

  • Joo, Young-Woong;Choi, Min
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.3
    • /
    • pp.105-112
    • /
    • 2017
  • PCI Express is a bus technology that connects the processor and the peripheral I/O devices that widely used as an industry standard because it has the characteristics of high-speed, low power. In addition, PCI Express is system interconnect technology such as Ethernet and Infiniband used in high-performance computing and computer cluster. PGAS(partitioned global address space) programming model is often used to implement the one-sided RDMA(remote direct memory access) from multi-host systems, such as computer clusters. In this paper, we design and implement a OpenSHMEM API based on PCI Express maintaining the existing features of OpenSHMEM to implement RDMA based on PCI Express. We perform experiment with implemented OpenSHMEM API through a matrix multiplication example from system which PCs connected with NTB(non-transparent bridge) technology of PCI Express. The PCI Express interconnection network is currently very expensive and is not yet widely available to the general public. Nevertheless, we actually implemented and evaluated a PCI Express based interconnection network on the RDK evaluation board. In addition, we have implemented the OpenSHMEM software stack, which is of great interest recently.

Design and Implementation of VoIP Equipment including Telephone Function for Home Gateway Connection (전화기 기능을 포함한 홈 게이트웨이 접속용 VOIP 장비 설계 및 구현)

  • Lee Yong-Soo;Jung Kwang-Wook;Chung Joong-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.123-131
    • /
    • 2004
  • Internet is absolutely contributed to information technology revolution nowadays. Internet services such as voice and data, etc. are provided home or small office via home gateway. The development of communication equipment via home gateway is implemented rapidly, and its product various. This paper presents the design and implementation of the VoIP equipment including the telephone function based on the embedded environment and being connected to the home gateway and the PC because of taking 2-ethernet LAN ports. As developing environment, the STLC1502 developed at ST Microelectronics as single chip solution, VxWorks as RTOS, and C language as coding mechanism are used. The verification of the developed systems for the voice test is carried out for the gatekeeper via Internet. The performance parameter is considered as the call processing capacity measuring the time of the call setup and clearing, and the data processing capacity for the file transfer. As a call setup and clearing is about 95ms, the call processing capacity is about 10 calls per second. The data processing capacity is 5.7Mbps in case of file transfer of server and client environment. Therefore the performance result is satisfied in the aspect of the call processing time and the data transfer time in Internet.

  • PDF

Utilizing Channel Bonding-based M-n and Interval Cache on a Distributed VOD Server (효율적인 분산 VOD 서버를 위한 Channel Bonding 기반 M-VIA 및 인터벌 캐쉬의 활용)

  • Chung, Sang-Hwa;Oh, Soo-Cheol;Yoon, Won-Ju;kim, Hyun-Pil;Choi, Young-In
    • The KIPS Transactions:PartA
    • /
    • v.12A no.7 s.97
    • /
    • pp.627-636
    • /
    • 2005
  • This paper presents a PC cluster-based distributed video on demand (VOD) server that minimizes the load of the interconnection network by adopting channel bonding-based MVIA and the interval cache algorithm Video data is distributed to the disks of each server node of the distributed VOD server and each server node receives the data through the interconnection network and sends it to clients. The load of the interconnection network increases because of the large volume of video data transferred. We adopt two techniques to reduce the load of the interconnection network. First, an Msupporting channel bonding technique is adopted for the interconnection network. n which is a user-level communication protocol that reduces the overhead of the TCP/IP protocol in cluster systems, minimizes the time spent in communicating. We increase the bandwidth of the interconnection network using the channel bonding technique with MThe channel bonding technique expands the bandwidth by sending data concurrently through multiple network cards. Second, the interval cache reduces traffic on the interconnection network by caching the video data transferred from the remote disks in main memory Experiments using the distributed VOD server of this paper showed a maximum performance improvement of $30\%$ compared with a distributed VOD server without channel bonding-based MVIA and the interval cache, when used with a four-node PC cluster.

Development of a Prototype Patient Monitoring System with Module-Based Bedside Units and Central Stations: Overall Architecture and Specifications (모듈형 환자감시기와 중앙 환자감시기로 구성되는 환자감시시스템 시제품의 개발: 전체구조 및 사양)

  • Woo, E.J.;Park, S.H.;Jun, B.M.;Moon, C.W.;Lee, H.C.;Kim, S.T.;Kim, H.J.;Seo, J.J.;Chae, K.M.;Park, J.C.;Choi, K.H.;Lee, W.J.;Kim, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.315-319
    • /
    • 1996
  • We have developed a prototype patient monitoring system including module-based bedside units, interbed network, and central stations. A bedside unit consists of a color monitor and a main CPU unit with peripherals including a module controller. It can also include up to 3 module cases and 21 different modules. In addition to the 3-channel recorder module, six different physiological parameters of ECG, respiration, invasive blood pressure, noninvasive blood pressure, body temperature, and arterial pulse oximetry with plethysmogaph are provided as parameter modules. Modules and a module controller communicate with up to 1Mbps data rate through an intrabed network based on RS-485 and HDLC protocol. Bedside units can display up to 12 channels of waveforms with any related numeric informations simultaneously. At the same time, it communicates with other bedside units and central stations through interbed network based on 10Mbps Ethernet and TCP/IP protocol. Software far bedside units and central stations fully utilizes gaphical user interface techniques and all functions are controlled by a rotate/push button on bedside unit and a mouse on central station. The entire system satisfies the requirements of AAMI and ANSI standards in terms of electrical safety and performances. In order to accommodate more advanced data management capabilities such as 24-hour full disclosure, we are developing a relational database server dedicated to the patient monitoring system. We are also developing a clinical workstation with which physicians can review and examine the data from patients through various kinds of computer networks far diagnosis and report generation. Portable bedside units with LCD display and wired or wireless data communication capability will be developed in the near future. New parameter modules including cardiac output, capnograph, and other gas analysis functions will be added.

  • PDF

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Radiation Oncology Digital Image Chart 8nd Digital Radiotherapv Record System at Samsung Medical Center (디지털 화상 병력 시스템과 디지털 방사선치료 기록 시스템의 개발과 사용 경험)

  • Huh Seung Jae;Ahn Yong Chan;Lim Do Hoon;Cho Chung Keun;Kim Dae Yong;Yeo Inhwan;Kim Moon Kyung;Chang Seung Hee;Park Suk Won
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.67-72
    • /
    • 2000
  • Background :The authors have developed a Digital image chart(DIC) and digital Radiotherapy Record System (DRRS). We have evaluated the DIC and DRRS for reliability, usefulness, ease of use, and efficiency. Materials and Methods :The basic design of the DIC and DRRS was to build an digital image database of radiation therapy Patient records for a more efficient and timely flow of critical image information throughout the department. This system is a submit of comprehensive radiation oncology management system (C-ROMS) and composed of a picture archiving and communication system (PACS), a radiotherapy information database, and a radiotherapy imaging database. The DIC and DRRS were programmed using Delphi under a Windows 95 environment and is capable of displaying the digital images of patients identification photos, simulation films, radiotherapy setup, diagnostic radiology images, gross lesion Photos, and radiotherapy Planning isodose charts with beam arrangements. Twenty-three clients in the department are connected by Ethernet (10 Mbps) to the central image server (Sun Ultra-sparc 1 workstation). Results :From the introduction of this system in February 1998 through December 1999, we have accumulated a total of 15,732 individual images for 2,556 patients. We can organize radiation therapy in a 'paperless' environment in 120 patients with breast cancer. Using this system, we have succeeded in the prompt, accurate, and simultaneous access to patient care information from multiple locations throughout the department. This coordination has resulted in improved operational efficiency within the department. Conclusion :The authors believe that the DIC and DRRS has contributed to the improvement of radiation oncology department efficacy as well as to time and resource savings by providing necessary visual information throughout the department conveniently and simultaneously. As a result, we can also achieve the 'paperless' and 'filmless' practice of radiation oncology with this system.

  • PDF