• Title/Summary/Keyword: Ethene

Search Result 40, Processing Time 0.026 seconds

EFFECT OF ETHENE $(C_2 H_4)$ ON THE PLASMA $DeNO_X$ PROCESS FROM DIESEL ENGINE EXHAUST

  • Park, Kwang-Seo;Kim, Dong-Inn;Lee, Hyeong-Sang;Chun, Bae-Hyeock;Yoon, Woong-Sup;Chun, Kwang-Min
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.77-83
    • /
    • 2001
  • Effect of ethene on the $DeNO_X$ conversion process in a simulated diesel engine operating conditions was investigated experimentally and theoretically. With the addition of even a small amount of ethene the NO to $NO_2$ conversion enhances greatly. The energy required to convert one NO molecule is 27 eV with 250 ppm ethene added, while 137 eV without ethene at 473 K. The effect of energy density, temperature, and the initial concentrations of ethene and oxygen are also discussed and the results show that the increase of the mentioned parameters lead to the promotion of NO oxidation. A kinetic model used in this study shows good agreement with the experimental result. Byproducts like formaldehyde ($CH_2$ 0) and methyl nitrite ($CH_3$ ONO) predicted by model calculation are broken up into CO and $H_2O$ eventually when high energy is delivered to the gas mixture. Sensitivity analysis shows that the main reactions of NO oxidation when ethene is added we: $HO_2+ NO \arrow NO_2 + OH, RO_2 + NO \arrow NO_2 + RO$, where R is a hydrocarbon radical. Also the direct oxidizing reaction of NO with O cannot be neglected.

  • PDF

Effect of ethene($C_2H_4$) on DeNOx using Plasma/Post-Heating System (플라즈마/후가열 장치를 이용한 NOx 저감에 에틴($C_2H_4$)이 미치는 영향에 관한 연구)

  • Jung, Sang-Ho;Lee, Hyeong-Sang;Park, Kwang-Seo;Chun, Bae-Hyeock;Chun, Kwang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.157-162
    • /
    • 2002
  • The characteristics of DeNOx conversion process by plasma/post-heating system with the simulated gas containing ethene is investigated experimentally. Without plasma treatment, $NO-NO_2$ conversion doesn't occur by $400^{\circ}C$ in a mixture of $N_2/O_2$ with a trace gas of ethene. But $NO-NO_2$ conversion occurs as temperature increases above $400^{\circ}C$. The NO can, however, be converted to $NO_2$ at lower temperatures by treating the gas mixture with non-thermal plasma. The $NO-NO_2$ conversion enhances further by passing the plasma treated gas through the post-heating furnace. Results show that 20%${\sim}50%$ more conversion of NO to $NO_2$ is observed when the temperatures of the post-heating furnace are maintained at $300^{\circ}C$ or $400^{\circ}C$. The additional $NO-NO_2$ conversion by post-heating is due to the reaction of ethene with the byproducts or radicals generated from the plasma reaction.

  • PDF

Anaerobic dechlorinating enrichment culture on tetrachloroethene (PCE) (PCE 탈염소화를 위한 혐기성배양)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Sung, Youl-Boong;Choi, Gang-Kook;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.185-185
    • /
    • 2007
  • Starting at the beginning q the 20th century, increasing amounts of tetrach1oroethene (PCE) and trichloroethene (TCE)were manufactured due to the extensive use of these compounds in industry, in the military, and in private households, mainly as nonflammable solvents. This widespread use, along with careless handling and storage, are among the most serious contaminants of soil, sediment and groundwater. Highly chlorinated ethenes are typically not degraded through oxygenation by aerobic bacteria Since complete reductive dechlorination of PCE and TCE to ethene (ETH) has been observed in anaerobic enrichment culture, anaerobic dehalorespiring bacteria have received increased attention in the last decade. Under anaerobic conditions, these compounds con be reductively dehalogenated to less-chlorinated ethenes or innocuous ethene by microorganism through dehalorespiration. We have been studying anaerobic enrichment culture which used lactate as the electron donor for reductive dechlorination of PCE to ETH the anaerobic mixed microbial culture was enriched from the sediment sample taken from site contaminated with PCE. PCE was consistently and completely converted to ethene. In addition, the accumulation of intermediate products such as 1,2-ds-dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the anaerobic mixed microbial culture. the established dechlorinating enrichment culture was analyzed by DGGE using primers specific to DefrJ1ococcoides 16S rRNA gene sequences. In conclusion, we established the PCE dechlorinating enrichment culture and confirmed the existence of Dehalococcoides in an enrichment culture.

  • PDF

Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment

  • Lee, Jaejin;Lee, Tae Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.120-129
    • /
    • 2016
  • An industrial complex in Wonju, contaminated with trichloroethene (TCE), was one of the most problematic sites in Korea. Despite repeated remedial trials for decades, chlorinated ethenes remained as sources of down-gradient groundwater contamination. Recent efforts were being made to remove the contaminants of the area, but knowledge of the indigenous microbial communities and their dechlorination abilities were unknown. Thus, the objectives of the present study were (i) to evaluate the dechlorination abilities of indigenous microbes at the contaminated site, (ii) to characterize which microbes and reductive dehalogenase genes were responsible for the dechlorination reactions, and (iii) to develop a PCE-to-ethene dechlorinating microbial consortium. An enrichment culture that dechlorinates PCE to ethene was obtained from Wonju stream, nearby a trichloroethene (TCE)-contaminated industrial complex. The community profiling revealed that known organohalide-respiring microbes, such as Geobacter, Desulfuromonas, and Dehalococcoides grew during the incubation with chlorinated ethenes. Although Chloroflexi populations (i.e., Longilinea and Bellilinea) were the most enriched in the sediment microcosms, those were not found in the transfer cultures. Based upon the results from pyrosequencing of 16S rRNA gene amplicons and qPCR using TaqMan chemistry, close relatives of Dehalococcoides mccartyi strains FL2 and GT seemed to be dominant and responsible for the complete detoxification of chlorinated ethenes in the transfer cultures. This study also demonstrated that the contaminated site harbors indigenous microbes that can convert PCE to ethene, and the developed consortium can be an important resource for future bioremediation efforts.

Photoacoustic Effect of Ethene: Sound Generation due to Plant Hormone Gases

  • Ide, David W.;Park, Han Jung
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.139-142
    • /
    • 2017
  • Ethene ($C_2H_4$), which is produced in plants as they mature, was used to study its photoacoustic properties using photoacoustic spectroscopy. Detection of trace amounts, with $N_2$ gas, of $C_2H_4$ gas was also applied. The gas was tested in various conditions-temperature, concentration of the gas, gas cell length, and power of the laser- to determine their effect on the photoacoustic signal, the ideal conditions to detect trace gas amounts, and concentration of $C_2H_4$ produced by an avocado and a banana. A detection limit of 10 ppm was determined for pure $C_2H_4$. A detection of 5% and 13% (by volume) concentration of $C_2H_4$ was produced for a ripening avocado and banana, respectively, in closed space.

Substituent Effect on Fluorescence and Photoisomerization of 1-(9-Anthryl)-2-(4-Pyridyl)ethenes

  • Shin, Eun-Ju;Lee, Sang-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1309-1338
    • /
    • 2002
  • The fluorescence and photoisomerization quantum yields of trans-1-(9-anthryl)-2-(4-pyridyl)ethene (t-4-APyE), 1-(10-methyl-9-anthryl)-2-(4-pyridyl)ethene (t-4-MeAPyE), and 1-(10-chloro-9-anthryl)-2-(4- pyridyl)ethene (t-4-ClAPyE) were measured in cyclohexane, acetonitrile, and methanol at room temperature.Polar solvents result in the drastic reduction of fluorescence quantum yield and increase of photoisomerization quantum yield for all three compounds. These results are probably due to the stabilization of intramolecular charge transfer (ICT) excited state in polar solvent. The higher contribution of ICT in the presence of more electron-donating methyl substituent, manifested by largest positive fluorescence solvatochromism, indicates that the pyridine ring acts as an electron acceptor. Protonation or methylation makes pyridine ring stronger electron acceptor and causes long-wavelength ground state charge transfer absorption band and complete quenching of fluorescence. The fluorescence from t-4-APyE derivatives can be switched off responding external stimuli viz. medium polarity, protonation, or methylation.

PHOTOCYCLIZATION REACTION OF 1-(9-ANTHRYL)-2-(n-PYRIDYL)ETHENE (n=2, 4) AND 1-(9-ANTHRYL)-2-)2-PYRAZINYL)ETHENE

  • Shin, Eun-Ju;Bae, Tae-Woong
    • Journal of Photoscience
    • /
    • v.6 no.2
    • /
    • pp.67-70
    • /
    • 1999
  • trans-1-(9-Anthryl)-2-(n-pyridyl)ethene (t-n-APyE, n=2 or 4) and trans-1-(9-anthryl)-2-pyrazinylethene (T-APzE) exhibits solvent-dependent fluorescence and efficient trans)cis photoisomerization. Photochemical reactivities of t-2-APyE, t-4-APyE, and t-APzE have been investigated in nonpolar and polar solvents. In nonpolar solvent, parallel photocyclization reaction occurs very efficiently in competition with the fluorescence and photoisomerization. But, in polar solvent, photocyclization was not observed. It is probably due to the stabilization of charge separated state in polar solvent, which is an intermediate in photoisomerization reaction.

  • PDF

Changes in the Organic Compounds and Molecular Weight Distribution in Pig Wastewater by Each Treatment Steps. (양돈폐수의 정화처리 과정별 유기물질 성분과 분자량 분포 변화 연구)

  • 최희철;이덕수;권두중;강희설;유용희;연규영;최영수;곽정훈;최동윤
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • These experiments were conducted to analyze the characteristics of organic compounds and molecular weight distribution according to the treatment steps of purifying system for pig wastewater. The results obtained are summarized as follow. 1. Raw pig wastewater contained 31 kinds of organic compounds such as acetic acid, 2-butanone, hexane, chloroform, propionic acid, butanoic acid etc. 2. After ozone treatment, 13 kinds of organic compounds such as ethene, pentane, 2-methylopropanal, hexane, furan and so on were detected in the wastewater. 3. After $TiO_2$ treatment, 12 kinds of organic compounds such as ethene, hexane, chloroform, 1-decene, silane and so on were detected from the effluent. 4. After both ozone and $TiO_2$ treatment, portion of molecular weight smaller than 500 Daltons and molecular weight between 500 to 1,000 Daltons in the wastewater increased.

  • PDF

EFFECT OF NITROGEN POSITION ON EXCITED STATE PROPERTIES OF 1-(9- ANTHRYL )-2-(n-QUINOLINYL)ETHENES

  • Shin, Eun-Ju
    • Journal of Photoscience
    • /
    • v.6 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • The fluorescence properties and photoisomerization behavior of 1-(9-anthryl)-2-(n-quinolinyl)ethene (n-AQE, n=2-4) have been investigated in various solvents. t-3-AQE is strongly fluorescent, but does not accomplish photoisomerization, similar to parent hydrocarbon compound, t-1-(9-anthryl)-2-phenylethene (t-9-APE) or t-1-(9-anthryl)-2-(1-naphthyl)ethene (t-1-ANE). Fluorescence and photoisomerization oft-2-AQE and t-4-AQE are strongly affected by solvent polarity. Dependence of fluorescence quantum yield on the solvent polarity is moderate for t-2-AQE and large for t-4-AQE. In nonpolar solvent (in n-hexane), they exhibit relatively strong fluorescence, but do not isomerize to cis isomer on irradiation, even if inefficient isomerization is observed for t-4-AQE. However, as solvent polarity increases, their fluorescences become weak with efficient photoisomerization to corresponding cis isomer. Intramolecular charge-transfer excited state is presumed to contribute to photoisomerization. The S$_1$ decay parameters were found to be solvent-dependent due to the charge-transfer character of lowest S$_1$ state. In polar solvents, the activation barrier to twisting is reduced enhancing the isomerization of r-2-AQE and t-4-AQE in the singlet manifold.

  • PDF