• Title/Summary/Keyword: Ethanol stress

Search Result 419, Processing Time 0.026 seconds

Biological Activity and Hepatoprotective Effects of Guava Branch Extract (구아바 가지 추출물의 생리활성 및 간세포 보호 효과)

  • Jeon, Ahyeong;Kim, Naeun;Cheon, Wonyoung;Kim, Younghwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.2
    • /
    • pp.210-217
    • /
    • 2021
  • This study evaluated the biological activity and cytoprotective effect of guava (Psidium guajava L.) branch against oxidative stress. The contents of vitamin C, beta-carotene, total carotenoids, quercetin and catechin determined were 26.783, 43.676, 65.083, 58.245, and 8.309 mg/100 g, respectively. To measure antioxidant activity, the guava branch was extracted using various concentrations of ethanol (60, 80, or 100%) and water. The highest content of polyphenols (0.245 mg gallic acid equivalent/mg residue) and flavonoids (0.128 mg cathechin equivalent/mg residue) was found in the 100% ethanol extract of the branch (E100). Moreover, E100 also possessed the highest radical scavenging activities and showed the highest inhibition rate of α-glucosidase (77.692%). E100 was the most effective extract to impart cytoprotectant activity against oxidative stress in HepG2 cells. Taken together, our results determine the promising antioxidant activity of guava branch, and indicate the potential to be applied as a natural antioxidant.

Investigation into the Ethanol Tolerance Mechanism by Regulation of Gene Expression (유전자 상호발현 조절을 통한 에탄올 내성 메커니즘의 규명)

  • Jung, Hoe-Myung;Choi, Ho-Jung;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Ethanol is a very valuable material, however, it is also a source of stress, as the accumulation of ethanol in a medium inhibits cell viability and decreases productivity of the target product. Therefore, the ethanol tolerance of yeast, which is closely related to ethanol productivity, is an important factor in industrial ethanol production. In this study, the YDJ1 and PEP5 genes were selected as target genes for elucidating ethanol-tolerant mechanisms by analyzing the expression regulation of these genes. The pA-YDJ1 and pA-PEP5 plasmids containing YDJ1 and PEP5 genes under an ADH1 promoter, respectively, were constructed and transformed into BY4742 (host strain), BY4742△ydj1, and BY4742△pep5 strains. The ethanol tolerance in the BY4742△ydj1/ pA-YDJ1 and BY4742△pep5/pA-PEP5 transformants was restored by overexpression of the YDJ1 and PEP5 genes to the host strain level. The YDJ1 and PEP5 genes were also introduced into the double gene disruptant (BY4742△ydj1△pep5) to investigate the expression regulation of the YDJ1 and PEP5 genes. The simultaneous overexpression of the YDJ1 and PEP5 genes restored ethanol tolerance to the 90% level of the BY4742 strain under 8% ethanol stress. The YDJ1 gene induced more overexpression of the PEP5 gene in the BY4742△ydj1 △pep5/pA-YDJ1, pA-PEP5 strain, suggesting that the YDJ1 gene partially regulates the expression of the PEP5 gene as an upstream regulator.

The Effects of Taheebo Extracts on Gastric Secretion and Gastric Injury in Rats (타히보 추출물의 흰쥐 위액 분비 및 위 손상에 미치는 영향)

  • 서광희
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.394-400
    • /
    • 1997
  • The effects of methanol and water extracts of Taheebo were investigated on gastric secretion, gastric lesion and ulcer in rate. Experimental gastric lesion and ulcer was produced in rats using the following methods : HCl.aspirin-induced lesion, HCl.ethanol-induced lesion, indomethacin-induced ulcer and water-immersion stress ulcer model. In addition, the amount of gastric secretion in pylorus-ligated rats for 4 hours was determined. Water extracts of Taheebo significantly inhibited HCl.aspirin-induced gastric lesion at 1,000mg/kg, po in rats. Likewise, Water extracts of Taheebo caused significant inhibition of indomethacin-induced ulcer at oral dose of 1,000mg/kg. The lesion induced by HCl.ethanol was significantly reduced by both water and methanol extracts of Taheebo. It also showed significant antiulcer activity in water-immersion stress ulcer, respectively. In gastric secretion experiments, methanol extracts of Taheebo also showed significant inhibition of gastric juice secretion, acidity and acid output at doses 500 and 1,000mg/kg. These results may suggest that Taheebo shows antigastritic and antiulcerative action in rats in part by the inhibition of gastric juice secretion and acidity.

  • PDF

Protective Effects of Ethanol Extract Mixtures of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus against Oxidative Stress-induced Damage in C2C12 Murine Myoblasts (C2C12 근아세포의 산화적 손상에 대한 고삼, 감초 및 백선피 복합 추출물의 보호효과)

  • Choi, Eun Ok;Hwang-Bo, Hyun;Kim, Min Young;Son, Da Hee;Jeong, Jin Woo;Park, Cheol;Hong, Su Hyun;Kim, Min Ju;Lee, Ji Young;Shin, Su Jin;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.179-191
    • /
    • 2017
  • Objectives : Increased oxidative stress by reactive oxygen species (ROS) has been suggested as a major cause of muscle fatigue. Although several studies have demonstrated the various biological properties of Sophora flavescens Aiton, Glycyrrhiza uralensis Fischer and Dictamnus dasycarpus Turcz, but the antioxidative potentials have not been clearly demonstrated. The present study was designed to investigate the protective effects of their water and ethanol extract mixtures (medicinal herbal mixtures, MHMIXs) on hydrogen peroxide ($H_2O_2$)-induced cell damage and apoptosis in C2C12 myoblasts. Methods : Cytotoxicity was assessed by an MTT assay. Quantitative evaluation of apoptosis induction and ROS production was evaluated by flow cytometry analysis. Expression levels of apoptosis regulatory and DNA-damage proteins were detected by Western blotting. Result : The inhibition of $H_2O_2$-induced cell proliferation was effectively blocked in extracts of 3: 1: 1 (EMHMIXs-1) or 2: 2: 1 (EMHMIXs-2) of S. flavescens, G. uralensis and D. dasycarpus Turcz, ethanol extracts from various complex extracts in C2C12 myoblasts. EMHMIXs-1 and EMHMIXs-2 also effectively attenuated $H_2O_2$-induced C2C12 cell apoptosis, which was associated with the restoration of the upregulation of Bad and death receptor 4, and downregulation of XIAP and cIAP-1 induced by $H_2O_2$. In addition, these herbal mixtures significantly blocked the $H_2O_2$-induced ROS generation and phosphorylation of $p-{\gamma}H2A.X$, which suggests that they can prevent $H_2O_2$-induced cellular DNA damage. Conclusions : The results suggest that EMHMIXs-1 and EMHMIXs-2 could block the DAN damage and apoptosis of C2C12 myoblasts by oxidative stress through blocking ROS generation.

Effect of Hydropsyche kozhantschikovi Extracts on Oxidative Stress (줄날도래 추출물이 산화적 스트레스에 미치는 영향)

  • Park, Young Mi;Lim, Jae Hwan;Lee, Jong Eun;Seo, Eul Won
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • The present study aimed to investigate effects of ethanol extracts from Hydropsyche kozhantschikovi on cell and DNA damage caused by oxidative stress. In a radical scavenging assay, compared with ascorbic acid used as a control, the level of DPPH (1,1-diphenyl-2-picrylhydrazyl) and that of hydroxyl radicals in H. kozhantschikovi extracts were 60.0% and 43.7%, respectively. The ferrous iron chelating level was 37.5% compared to the chelating value of EDTA (ethylenediaminetetraacetic acid) as a positive control at the same concentration. To verify inhibitory effects of oxidative cell damage induced by reactive oxygen species (ROS), the relative level of lipid peroxidation and the expression level of the p21 protein were compared in extracts-treated and untreated groups. Lipid peroxidation was completely inhibited in the extracts-treated group compared with the radical-only treated group. The level of p21 protein expression was restored to 92.2% of p21 protein expression in the control sample. In addition, DNA cleavage inhibition in the H. kozhantschikovi extracts was 74.1% compared with that of the control group, suggesting that H. kozhantschikovi extracts repress DNA cleavage induced by ROS. Moreover, the phosphorylation ratio of the H2AX protein was 16.7% in the radical-treated group, indicating that the ethanol extracts inhibited 83.3% of DNA damage. Our findings suggest that ethanol extracts from H. kozhantschikovi are effective not only in repressing the oxidation of free radicals and highly toxic hydroxyl radicals, but also in decreasing cell and DNA damage caused by oxidative stress.

Hepatoprotective Effects of GongJin-dan, on Ethanol-mediated Experimental Liver Damage in Rats

  • Hur, Hyun;Kim, Hee-Jun;Park, Kyung;Kwak, Min-A;Kim, Dae-Jun;Byun, Joon-Seok
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.1037-1047
    • /
    • 2008
  • Background : A traditional Oriental medicine, GongJjn-dan (GJD), is one of the most well-known tonic agents in Korea. Among 6 types of GJD components, antler, red ginseng, and Cornus fructus have shown antioxidant effects, while EtOH-induced tissue damage may be a consequence of oxidative stress. Objectives & Methods : The hepatoprotective effects of GJD were evaluated on EtOH-mediated experimental liver damaged rats at 50, 100, 250 and 500mg/kg comparing with 100mg/kg of silymarin as a reference drug in the present study. Test substances were dosed once a day for 60 days with oral administration of 20% ethanol 2.5ml/100g body weight twice a day (equivalent to 7.9g ethanol/kg/day). Each of 8 rats per group was selected using body weight at 10 days after acclimatization. Experimental animals were sacrificed after 60 days of continuous oral treatment of test substances with 20% ethanol treatment, and changes on the body weight, liver weight, and serum AST and ALT were observed. Results : There were dramatic decreases of body weight and increases of liver weight and serum AST and ALT. Similar inhibition effects on the EtOH-induced hepatic damages were detected between equal dosages of GJD and silymarin. Conclusion : Based on these results. it is concluded that GJD showed clear hepatoprotective effects on EtOH-induced hepatic damage.

  • PDF

The Effects of Chungganhaeju-tang(Qingganjiejiu-tang) on Alcohol induced Cytotoxicity in CYP2E1-transfected HepG2 cells (청간해주탕(淸肝解酒湯)이 CYP2E1-transfected HepG2 cell에서 알코올유발 세포독성에 미치는 영향)

  • Lee, Ji-Eun;Kim, Young-Chul;Woo, Hong-Jung;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.27-39
    • /
    • 2006
  • Objectives : Induction of CYP2E1 by ethanol is believed to be one of the major mechanism by which ethanol generate a state of oxidative stress. Previous studies showed that treatment with Chungganhaeju-tang prevents hepatic inflammation and apoptosis in alcoholic liver disease. The purpose of our study is to determine if Chungganhaeju-tang can also protect against alcohol-induced cytotoxicity in CYP2E1-transfected HepG2 cells. Materials and Methods : CYP2E1-transfected HepG2 cells and control vector-transfected HepG2 cells were exposed for isx hours to Chungganhaeju-tang, and then 50 mM of ethanol was added and left for two days. Results : Ethanol significantly decreased cell viability in CYP2E1-transfected HepG2 cells and increased apoptosis. These alterations were attenuated by Chungganhaeju-tang. This was accompanied by an improvement of NF-${\kappa}B$ and Akt activation. Conclusion : These results suggest that Chungganhaeju-tang exerts inhibitory effect against the cytotoxicity induced by alcohol in CYP2E1-transfected HepG2 cells, and that this is a protective action due, at least in part, to an activation of NF-${\kappa}B$ that plays a key role in the protection mechanism, and in reducing hepatotoxic cytokine gene expression.

  • PDF

Minimal Subdermal Shaving by Means of Sclerotherapy Using Absolute Ethanol: A New Method for the Treatment of Axillary Osmidrosis

  • Shim, Hyung-Sup;Min, Sung-Kee;Lim, Jin-Soo;Han, Ki-Taik;Kim, Min-Cheol
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.440-444
    • /
    • 2013
  • Background Axillary osmidrosis is characterized by unpleasant odors originating from the axillary apocrine glands, resulting in psychosocial stress. The main treatment modality is apocrine gland removal. Until now, of the various surgical techniques have sometimes caused serious complications. We describe herein the favorable outcomes of a new method for ablating apocrine glands by minimal subdermal shaving using sclerotherapy with absolute ethanol. Methods A total of 12 patients underwent the procedure. The severity of osmidrosis was evaluated before surgery. Conventional subdermal shaving was performed on one side (control group) and ablation by means of minimal subdermal shaving and absolute ethanol on the other side (study group). Postoperative outcomes were compared between the study and control groups. Results The length of time to removal of the drain was 1 day shorter in the study group than in the control group. There were no serious complications, such as hematoma or seroma, in either group, but flap margin necrosis and flap desquamation occurred in the control group, and were successfully managed with conservative treatment. Six months after surgery, we and our patients were satisfied with the outcomes. Conclusions Sclerotherapy using absolute ethanol combined with minimal subdermal shaving may be useful for the treatment of axillary osmidrosis. It can reduce the incidence of seroma and hematoma and allow the skin flap to adhere to its recipient site. It can degrade and ablate the remaining apocrine glands and eliminate causative organisms. Furthermore, since this technique is relatively simple, it takes less time than the conventional method.

Hepatoprotective Evaluation of Ganoderma lucidum Pharmacopuncture: In vivo Studies of Ethanol-induced Acute Liver Injury

  • Jang, Sun-Hee;Cho, Sung-Woo;Yoon, Hyun-Min;Jang, Kyung-Jeon;Song, Chun-Ho;Kim, Cheol-Hong
    • Journal of Pharmacopuncture
    • /
    • v.17 no.3
    • /
    • pp.16-24
    • /
    • 2014
  • Objectives: Alcohol abuse is a public issue and one of the major causes of liver disease worldwide. This study was aimed at investigating the protective effect of Ganoderma lucidum pharmacopuncture (GLP) against hepatotoxicity induced by acute ethanol (EtOH) intoxication in rats. Methods: Sprague-Dawley (SD) rats were divided into 4 groups of 8 animals each: normal, control, normal saline pharmacopuncture (NP) and GLP groups. The control, NP and GLP groups received ethanol orally. The NP and the GLP groups were treated daily with injections of normal saline and Ganoderma lucidum extract, respectively. The control group received no treatment. The rats in all groups, except the normal group, were intoxicated for 6 hours by oral administration of EtOH (6 g/kg BW). The same volume of distilled water was administered to the rats in the normal group. Two local acupoints were used: Qimen (LR14) and Taechung (LR3). A histopathological analysis was performed, and the liver function and the activities of antioxidant enzymes were assessed. Results: GLP treatment reduced the histological changes due to acute liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase (ALT) enzyme; however, it had an insignificant effect in reducing the increase in aspartate aminotransferase (AST) enzyme. It also significantly ameliorated the superoxide dismutase (SOD) and the catalase (CAT) activities. Conclusion: The present study suggests that GLP treatment is effective in protecting against ethanol-induced acute hepatic injury in SD rats by modulating the activities of ethanol-metabolizing enzymes and by attenuating oxidative stress.

Fermented Aloe arborescens Miller Leaf Extract Suppresses Acute Alcoholic Liver Injury via Antioxidant and Anti-Inflammatory Effects in C57BL/6J Mice

  • Min Ju Kim;Joon Hurh;Ha-Rim Kim;Sang-Wang Lee;Hong-Sig Sin;Sang-Jun Kim;Eun-mi Noh;Boung-Jun Oh;Seon-Young Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.