• Title/Summary/Keyword: Ethanol gas

Search Result 358, Processing Time 0.03 seconds

Identification and Characterization of an Anaerobic Ethanol-Producing Cellulolytic Bacterial Consortium from Great Basin Hot Springs with Agricultural Residues and Energy Crops

  • Zhao, Chao;Deng, Yunjin;Wang, Xingna;Li, Qiuzhe;Huang, Yifan;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1280-1290
    • /
    • 2014
  • In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA library-based analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

Surface acoustic wave gas sensors by assembling gas chromatography column (가스 크로마토그래피를 부착한 표면탄성파 가스 센서)

  • Yoo, Beom-Keun;Park, Yong-Wook;Kang, Chong-Yun;Yoon, Seok-Jin;Choi, Doo-Jin;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • This paper presents characteristics of surface acoustic wave (SAW) gas sensor for detecting volatile gases such as acetone, methanol, and ethanol by measuring phase shift of output signal. A delay-line by combining with a center frequency of 200 MHz was fabricated on S-T Quartz substrates. Using gas chromatography column, the selectivity of the SAW gas sensor were introduced. Experimental results, which show the phase change of output signal under the absorption of volatile gas on sensor surface, were presented. This SAW gas sensor system may be well suited for a high performance electronic nose system.

Oxidation of Ethanol in the Gas Phase with Alcohol Oxidase and Alcohol Dehydrogenase (Alcohol Oxidase와 Alcohol Dehydrogenase를 이용한 기상에서의 Ethanol의 산화반응)

  • 박현규;장호남김동옥
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1994
  • The effects of reaction temperature and the level of hydration(water activity) were studied for gas phase reactions of alcohol oxidase and alcohol dehydrogenase immobilized on DEAE-cellulose and controlled pore glass(CPG). Optimum reaction temperature zone of gas phase reaction was similar to that of aqueous phase reaction. The activity of alcohol oxidase increased dramatically and the stability decreased when the water activity was increased from 0.3 to 0.8. The apparent activation energies of the gas phase reaction decreased approaching the values obtained in the aqueous phase reaction as the water activity increased. In the both cases of alcohol oxidase and alcohol dehydrogenase, the rate constants of the gas phase reaction were lower than those of aqueous phase reaction by two orders of magnitude and these results could be correlated to the vapor-liquid equilibrium data of the substrate, ethanol.

  • PDF

Growth and Acid Production by Leuconostoc mesenteroides in Milk Added with Cereal and Analysis of Several Volatile Flavor Compounds (곡류를 첨가한 우유에서 Leuconostoc mesenteroides의 생육과 산생성 및 몇가지 휘발성 향기성분의 분석)

  • 고영태;김경희
    • Korean journal of food and cookery science
    • /
    • v.11 no.3
    • /
    • pp.316-322
    • /
    • 1995
  • A curd yogurt was prepared from milk added with skim milk powder or four kinds of cereal. Addition of cereals markedly stimulated acid production by Leuc. mesenteroides. The acidity significantly increased during fermentation by Leuc. mesenteroides for 30 hours while pH significantly decreased during fermentation. The number of viable cells markedly increased until the first 12 or 18 hours of fermentation by Leuc. mesenteroides. Acetaldehyde, acetone, ethanol, diacetyl, butanol and acetoin in curd yogurt were detected by gas chromatographic analysis. Among these compounds, acetaldehyde, ethanol, diacetyl and acetoin were produced during fermentation by Leuc. mesenteroides.

  • PDF

Development of an Auto Dilution Unit of Substrate Solutionfor a Flow Injection Type Biosensor (흐름주입식 바이오센서용 기질용액 자동희석 장치 개발)

  • Song, D.B.;Jung, H.S.;Jung, D.H.;Kim, S.T.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.443-448
    • /
    • 2006
  • For development of an on-line monitoring unit of fermentation process, an auto dilution unit based on traditional chemical and biological analytical method was developed and the performance was evaluated. The dilution unit was constructed with two syringe pumps and flow direction change valves and fully automated. Total delivery volume of two pumps using distilled water was measured to confirm the operating stability And diluted concentrations of three substrate solutions (glucose, lactic acid, ethanol) were compared with a standard method with a high performance liquid chromatograph (glucose, lactic acid) and gas chromatograph (ethanol). Relative error values of total delivery volume of the pumps were below 3% and standard deviation values were 0.003 (n=5). Relative error values of diluted concentration of the dilution unit measurements were below 2% with 1/10 of dilution ratio and 70, $80{\mu}{\ell}$ of sample volume conditions for glucose and lactic acid, 1/30 of dilution ratio and $70{\mu}{\ell}$ of sample volume conditions for ethanol, respectively. In case of the ethanol, cause of the evaporative characteristics, the relative error values showed over 5% whole experimental conditions.

Recent Developments in Metal Oxide Gas Sensors for Breath Analysis (산화물 반도체를 이용한 최신 호기센서 기술 동향)

  • Yoon, Ji-Wook;Lee, Jong-Heun
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.

Pervaporation Characteristics of Water/Ethanol and Water/Isopropyl Alcohol Mixtures through Zeolite 4A Membranes: Activity Coefficient Model and Maxwell Stefan Model (제올라이트 4A 분리막을 이용한 물/에탄올, 물/이소프로필알코올 혼합물의 투과증발 특성 연구 : 활동도계수모형 및 Generalized Maxwell Stefan 모형)

  • Oh, Woong Jin;Jung, Jae-Chil;Lee, Jung Hyun;Yeo, Jeong-gu;Lee, Da Hun;Park, Young Cheol;Kim, Hyunuk;Lee, Dong-Ho;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this study, pervaporation experiments of water, ethanol and IPA (Isopropyl alcohol) single components and water/ethanol, water/IPA mixtures were carried out using zeolite 4A membranes developed by Fine Tech Co. Ltd. Those membranes were fabricated by hydrothermal synthesis (growth in hydrothermal condition) after uniformly dispersing the zeolite seeds on the tubular alumina supports. They have a pore size of about $4{\AA}$ by ion exchange of $Na^+$ to the LTA structure with Si/Al ratio of 1.0, and shows strong hydrophilic property. Physical characteristics of prepared membranes were evaluated by using SEM (surface morphology), porosimetry (macro- or meso- pore analysis), BET (micropore analysis), and load tester (compressive strength). Pervaporation experiments with various temperature and concentration conditions confirmed that the zeolite 4A membrane can selectively separate water from ethanol and IPA. Water/ethanol separation factor was over 3,000 and water/IPA separation factor was over 1,500 (50 : 50 wt%, initial feed concentration). Pervaporation behaviors of single components and binary mixtures were predicted using ACM (activity coefficient model), GMS (generalized Maxwell Stefan) model and DGM (Dusty Gas Model). The adsorption and diffusion coefficients of the zeolite top layer were obtained by parameter estimation using GA (Genetic Algorithm, stochastic optimization method). All the calculations were carried out using MATLAB 2018a version.

Characteristics of Volatile Compound Adsorption from Alcoholic Model Solution onto Various Activated Carbons (알코올모델용액을 이용한 여러 종류 활성탄의 휘발성화합물 흡착특성)

  • Park, Seung-Kook;Lee, Myung-Soo;Kim, Byung-Ho;Kim, Dae-Ok
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Ten commercial activated carbons (ACs) prepared from four different sources (bamboo, wood, peat, and coal) were evaluated for their adsorptive efficiency of six volatile compounds (isoamyl alcohol, hexanal, furfural, ethyl lactate, ethyl octanoate, 2-phenyl ethanol) which were dissolved in a 30% alcoholic model solution. These six volatile compounds are frequently found in alcoholic beverages and possibly contribute to physiological hangover due to their high concentrations. They are also generally regarded as off-flavor compounds at certain levels in alcoholic beverages such as whisky and vodka. Two hundred mL of 30% alcoholic solutions containing these six volatile compounds were treated with 0.2 g of ACs while stirring for 16 hr; the treated solutions were then measured for their adsorptive efficiencies (or removal efficiencies) by gas chromatographic analysis using two different sampling methods (direct liquid injection and headspace-solid phase microextraction). The adsorptive efficiencies of the ACs varied depending on the identity of the volatile compounds and the source material used for making the ACs. Ethyl octanoate, 2-phenyl ethanol, and hexanal were removed at high efficiencies (34-100%), whereas isoamyl alcohol, ethyl lactate, and furfural were removed at low efficiencies (5-13%). AC prepared from bamboo showed a high removal efficiency for isoamyl alcohol, aldehydes (hexanal and furfural), and 2-phenyl ethanol; these major fusel oils have been implicated as congeners responsible for alcohol hangover.

Preparation and Characterization of Insoluble Anodes for Electrodeposition of Ni-W Alloys in Ammoniacal Citrate Bath (Ni-W 합금도금용 불용성 양극의 제조 및 특성 연구)

  • 장도연;강성군
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.686-694
    • /
    • 1999
  • Insoluble anodes of the Ta/Ir mixed metal oxide for electrodeposition of Ni-W alloy in ammoniacal citrate bath were prepared by thermal decomposition method. Ti plate was etched in boiling oxalic acid solution and coated with ethanol solution of $TaCl_{5}$ and $IrCl_4$ mixed in a fixed ratio, followed by drying and treating at various temperatures. The coating layer of these insoluble anode was characterized by SEM, EDX, XRD and DSC. The decomposition rate of citric acid in plating bath was determined by measuring the $CO_2$ gas evolved at the anodes with Gas Chromatography. Evolution of $CO_2$ gas from Ta/Ir oxide anodes decreased about 5% compared with that of Pt. The $CO_2$ gas evolution was increased with the amount of Ir-oxide in the coatings. The coatings which have more than 40% ratio of Ta content and heat-treated at the temperature higher than $400^{\circ}C$ showed better efficiency

  • PDF

Organic Gas Response Characteristics of Maleate Copolymer LB Films (말레에이트 공중합체 LB막의 유기 가스 반응 특성)

  • 이을식;김도균;유승엽;최용성;권영수;박재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.415-418
    • /
    • 1998
  • The maleate copolyrner($C_{18}MA-VE_2$) is used as sensitive materials and deposited on the slide-glass substrates at room temperature using Langmuir-Blodgett(LB) method. The results of current-time(1-t) measurements are performed to investigate the gas-detection characteristics of the sensitive LB films in the presence of organic gases just as chloroform, acetone, ethanol, methanol using the apparatus for the gas-detection measurement. Several interesting responses are observed at room temperature, such as reversible response, sensitivity and response time. Response time and sensitivities are evaluated 160~220[sec], minimum 6[times], maximum 70[times] for each organic gas by adsorption and penetration of the organic gases in the relation concentration of 100[%], respectively.

  • PDF