• Title/Summary/Keyword: Ethanol fermentation

Search Result 908, Processing Time 0.023 seconds

Ethanol Production from Lignocellulosic Biomass by Simultaneous Saccharification and Fermentation Employing the Reuse of Yeast and Enzyme

  • KIM, JUN-SUK;KYUNG-KEUN OH;SEUNG-WOOK KIM;YONG-SEOB JEONG;SUK-IN HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • Simultaneous saccharification and fermentation (SSF) experiments were carried out with a lignocellulosic biomass. The effects of temperature on enzymatic saccharification and the ethanol fermentation were also investigated. The batch SSF process gave a final ethanol concentration of 10.44 g/l and equivalent glucose yield of 0.55 g/g, which was increased by 67% or higher over the saccharification at 42℃. The optimal operating condition was found to vary in several parameters, such as the transmembrane pressure, permeation rate, and separation coefficient, related to the SSF combined with membrane system (semi-batch system). When the fermentation was operated in a semi-batch mode, the efficiency of the enzymes and yeast lasted three times longer than in a batch mode.

  • PDF

Temperature Effects and Optimization for Ethanol Fermentation (에탄올 발효에서의 온도의 영향 및 발효공정의 최적화)

  • 박종경;백승윤;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.619-623
    • /
    • 1989
  • The effects of temperature on yeast growth and ethanol production were investigated in batch cultures. The maximum specific growth rate of yeast was obtained at 36$^{\circ}C$ and the maximum specific production rate of ethanol was obtained at 33$^{\circ}C$. A mathematical model was employed to describe the temperature effects in ethanol fermentation and the parameters in the model were expressed as a function of temperature. Optimum temperature control strategy, from the simulation result, consists of starting the fermentation at high temperature and lowering the temperature as the fermentation proceeds.

  • PDF

Process Development for Alcohol Production by Extractive Fermentation (추출 발효에 의한 알콜 제조 공정개발 -PEG/Dx 최적 이상계의 선정-)

  • 김진한;허병기목영일
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.175-180
    • /
    • 1991
  • The quantitative effects of molecular weight and concentrations of two phase-forming polymers-polyethylene glycol and crude dextran on the two phase extractive ethanol fermentation were investigated using a Box-Wilson central composite protocol. The regression model obtained was used in order to determine optimum compositions of aqueous two phase system. In the aqueous two phase extractive ethanol fermentation of Kluyueromyces fragilis CBS 1555 with Jerusalem artichoke juice, it was found from the regression model that the variables influenlcing on ethanol fermentation were PEG concentration, time, Dx concentration, and PEG molecular weight strongly in order. The interaction of PEG concentration and PEG molecular weight was also found, and the effect of PEG concentration decreased with increase in molecular weight of PEG. The ethanol concentration incresed with increase in molecular weight of PEG, and with decrease in concentration of PEG. In conolusion, maximum concentration of ethanol produced was obtained at the following compositions; PEG MW 20000, Dx concentration ranged from 4% to 5%, and PEG concentration ranged from 3% to 7%.

  • PDF

Improvement of Ethanol Yield by Addition of Acetic Acid and Acetatdehyde in Ethanol Fermentation (에탄올 발효에서 초산 및 아세트알데히드 첨가에 의한 에탄올 수율의 증진)

  • 김진현;여주상유영제
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.370-373
    • /
    • 1995
  • The major by-products in ethanol fermentation by Saccharomyces cerevisiae were glycerol, acetaldehyde, acetic acid, lactic acid, and formic acid. The effects of these by-products on the cell growth and ethanol production were studied. By adding acetaldehyde or acetic acid in the fermentation broth, the cell growth decreased while the ethanol production increased. But glycerol and lactic acid had nearly no effects on the cell growth and the ethanol production. Acetic acid and acetaldehyde inhibited the cell growth by diminishing the growth rate as well as by prolonging the lag phase. The ethanol yield increased with the elevation of concentrations of acetic acid and acetaldehyde in the fermentation broth. The maximum ethanol yield was obtained for $3g/\ell$ acetic acid and $2g/\ell$ acetaldehyde, respectively.

  • PDF

Study of Sugarcane Pieces as Yeast Supports for Ethanol Production from Sugarcane Juice and Molasses Using Newly Isolated Yeast from Toddy Sap

  • Babu, Neerupudi Kishore;Satyanarayana, Botcha;Balakrishnan, Kesavapillai;Rao, Tamanam Raghava;Rao, Gudapaty Seshagiri
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • A repeated batch fermentation system was used to produce ethanol using $Saccharomyces$ $cerevisiae$ strain (NCIM 3640) immobilized on sugarcane ($Saccharum$ $officinarum$ L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65-76.28 g/L in an average value) and ethanol productivities (about 2.27-2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9-3.25 g/L) with conversions ranging from 98.03-99.43%, showing efficiency 91.57-95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations.

Ethanol Fermentation by Cell Recycle Fermentor with a Fabric Filter (직물 여과기를 부착한 재순환 발효에 의한 에탄올 생산)

  • 정성구;이우기장호남
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.159-165
    • /
    • 1990
  • Ethanol fermentation by Scccharomyces cervisiae was carried out in the cell recycle filter system with a cheap fabric filter having a pore size of 10${\mu}$m. Maximum biomass concentrations up to 85g/1 were obtained, but in practice operational concentrations were between 50 and 80g/1. Ethanol productivity was 42g/1-hr, with an ethanol concentration of 66g/1 and an ethanol yield of over 86%. Continuous operation was possible by applying periodic backflushing. The ethanol fermentation could be carried out without difficulty at a dilution rate up to 0.8h-1 In order to obtain a high cell concentration and ethanol productivity, development of filter module with the larger filtration area is required.

  • PDF

Direct Alcohol Fermentation of Starch by Schwanniomyces castellii (Schwanniomyces castellii에 의한 전분의 직접 알콜발효)

  • 성정헌;고성환유연우
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.229-234
    • /
    • 1992
  • Alcohol fermentations were carried out to confirm the capacity of ethanol production from glucose, starch and soluble starch(dextrin) by Schwanniomyces castellii NRRL Y-2477. Schw. castellii NRRL Y-2477 was able to produce the 63.9g/l ethanol using 94% subtrate from 150g/l-glucose medium. The direct alcohol fermentation of starch having the maximum solubility of 20g/1 at $30^{\circ}C$ yielded 9.1g/l ethanol upon complete depletion of starch, whereas 34.5g/1 ethanol was produced by utilizing 82% of 100g/1 soluble starch medium. The fermentation of 150g/1 soluble starch produced 52.1g/l ethanol using about 79% of substrate. Thus, it was found that the limiting step of direct alcohol fermentation of starch by Schwanniomyces castellii NRRL Y-2477 was a hydrolysis of starch.

  • PDF

Growth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit

  • Lee, Jong-Sub;Park, Eun-Hee;Kim, Jung-Wan;Yeo, Soo-Hwan;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1253-1259
    • /
    • 2013
  • The influences of glucose concentration, initial medium acidity (pH), and temperature on the growth and ethanol production of Saccharomyces cerevisiae NK28, which was isolated from kiwi fruit, were examined in shake flask cultures. The optimal glucose concentration, initial medium pH, and temperature for ethanol production were 200 g/l, pH 6.0, and $35^{\circ}C$, respectively. Under this growth condition, S. cerevisiae NK28 produced $98.9{\pm}5.67$ g/l ethanol in 24 h with a volumetric ethanol production rate of $4.12{\pm}0.24g/l{\cdot}h$. S. cerevisiae NK28 was more tolerant to heat and ethanol than laboratory strain S. cerevisiae BY4742, and its tolerance to ethanol and fermentation inhibitors was comparable to that of an ethanologen, S. cerevisiae D5A.

Screening of Thermotolerant Yeast Strain for Ethanol Fermentation (Ethanol 발효를 위한 내열성 효모 균주의 Screening)

  • Ryu, Beung-Ho;Nam, Ki-Du;Kim, Hae-Sung;Kim, Dong-Seuk;Ji, Young-Ae;Jung, Soo-Ja
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.4
    • /
    • pp.265-269
    • /
    • 1988
  • For the purpose of developing new thermotolerant yeast strains for ethanol fermentation, yeasts were isolated from molasses and screened for their fermentation ability at elevated temperatures. Three candidate strains were screened. These strains preferred pH 5.0 and 34$^{\circ}C$ for their ethanol production. Under such conditions the three strains showed average ethanol productivity of 75g ethanol per liter of fermentation broth in n synthetic medium containing glucose as substrate. These strains were identified as Saccharomyces cerevisiae and Kluveromyces marxianus.

  • PDF

Enhancement of Ethanol Production by The Removal of Fermentation Inhibitors, and Effect of Lignin-derived Inhibitors on Fermentation (에탄올 생산 향상을 위한 발효저해물질 제거와 리그닌 유래 발효저해물질이 에탄올 발효에 미치는 영향)

  • Um, Min;Shin, Gyeong-Jin;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.389-397
    • /
    • 2016
  • In this study, ethanol was produced from a biomass hydrolysate that had been treated by electrodialysis (ED) and Amberlite XAD resin to remove fermentation inhibitors. Most of the acetic acid (95.6%) was removed during the ED process. Non-ionizable compounds such as total phenolic compounds, 5-hydroxymethyl furfural, and furfural were effectively removed by the XAD resin treatment. Ethanol production was improved when the ED-treated hydrolysate was treated with XAD-4 resin for a short reaction time. The highest ethanol production from ED-treated hydrolysate was $6.16g/{\ell}$ (after 72 h of fermentation) when the treatment with XAD-4 resin was for 5 min. Among the lignin-derived fermentation inhibitors tested, syringaldehyde in low concentrations (1 and 2 mM) in the hydrolysate increased ethanol production, whereas a high concentration (5 mM) inhibited the ethanol production process. A synthetic medium containing syringaldehyde and ferulic acid was prepared to investigate the synergistic effect of inhibitors on ethanol fermentation. Ethanol production decreased in the mixture of 1 mM syringaldehyde and 1 mM ferulic acid, implying that the effect of ferulic acid on ethanol fermentation is comparable to that of syringaldehyde.