• Title/Summary/Keyword: Ethanol fermentation

Search Result 908, Processing Time 0.019 seconds

Simultaneous Saccharification of Inulin and Ethanol Fermentation by Recombinant Saccharomyces cerevisiae Secreting Inulinase

  • Kim, Youn-Hee;Nam, Soo-Wan;Chung, Bong-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.55-60
    • /
    • 1998
  • Various Saccharomyces cerevisiae strains were transformed with a 2 ${\mu}$-based multicopy expression plasmid, pYIGP, carrying Kluyveromyces marxianus inulinase gene under the control of GAPDH promoter. Among then two strains, SEY2102 and 2805, showed high levels of cell growth and inulinase expression, and were selected to study their fermentation properties on inulin. Jerusalem artichoke inulin was more effective for cell growth (10∼11 g-dry wt./L at 48 hr) and inulinase expression (1.0 units/mL with SEY2102/pYIGP and 2.5 units/mL with 2805/pYIGP) than other inulin sources such as dahlia and chicory. It was also found that maximal ethanol production of 9 g/L was obtained from Jerusalem artichoke inulin at the early stationary phase (around 30 hr), indicating that recombinant S. cerevisiae cells secreting exoinulinase could be used for the simultaneous saccharification of inulin and ethanol fermentation.

  • PDF

The Effect of Light on Champagne Yeast Cell Growth and Ethanol Production Under Variable pH Conditions

  • Collins, Paul C.;Schnelle, Karl B.;Malaney, Jr.George W.;Tanner, Robert D.
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.189-194
    • /
    • 1991
  • The effect of wtlitc light on unaeraten growth of Baker's yeast and the accompanying ethanol production has been studied in a batch process at 27$^{\circ}C$. Over the 80-hour period of the Champagne yeast process without pH control, the cull growth was inhibited by the fluorescent light. Another observed difference between the runs is that the drop and subsequent rise in redox potential occurred much sooner in the fermentation with light than in the fermentation without light. This preliminary study indicated that ethanol production could be enhanced by light as the cell concentration is repressed. The possible pathway, shift of the sugar substrate toward ethanol and away from cells was manifested by another difference as well. As observed under the microscope, many of the yeast cells grown under light budded without dividing by the normal fission process as they did in the dark. Furthermore, the undivided and branched (light grown) cell did not agglutinate at the end of the fermentation process as did the distinct spherical (dark grown) cells.

  • PDF

The Fermentation Characteristics of Newly Selected Thermotolerant Yeasts at High Temperature

  • Sohn, Ho-Yong;Park, Wan;Jin, Ing-Nyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.222-229
    • /
    • 1994
  • In order to develop a method of economical production and to reduce energy-consumption in fuel alcohol production, we investigated the fermentation characters of two newly selected thermotolerant yeasts. The RA-74-2 showed stable and superior fermentability between 30 and $40^{\circ}C$ in 20% glucose media in comparison to the industrial strains. The optimum concentration of glucose for economical fermentation at $40^{\circ}C$ was 15-18%, and organic nitrogen was necessary for a satisfactory fermentation. The optimum pH was 4.0 and aeration was adversed for high temperature fermentation. Agitation was an important factor at $40^{\circ}C$ and the addition of magnesium ion 0.2% was required in this experiment. When the inoculum was increased, ethanol productivity as well as the speed of fermentation increased. On the other hand RA-912, which can grow at $48^{\circ}C$, showed similar fermentability between 30-$45^{\circ}C$ in 20% glucose media As the concentration of substrate decreased, fermentation ratio increased at $45^{\circ}C$ (45%, 65%, 95% fermentation ratio in 20%, 15%, 10% glucose media, respectively). Also, requirement of organic nitrogen and magnesium ion in RA-912 was similar in RA-74-2. The optimum pH for fermentation was 5.0, and the effects of agitation were enhanced at $37^{\circ}C$ than at $45^{\circ}C$. As the inoculum was increased, fermentation speed became more enhanced but the ethanol productivity was less affected. RA-912 showed fermentability with various substrates. Among the substrates used, inulin was the most promising substrate for the high-temperature fermentation. When 14.5% inulin was used as the substrate, 93% and 55% fermentation ratios were shown at $37^{\circ}C$ and $45^{\circ}C$, respectively.

  • PDF

Changes of Volatile Flavor Compounds in Traditional Kochujang during Fermentation (재래식고추장 숙성과정 중의 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Park, Sung-Oh;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.745-751
    • /
    • 1997
  • Volatile flavor components of kochujang made from a glutinuous rice by traditional method were analyzed by using purge and trap method during fermentation, and identified with GC-MSD. Fifty-one volatile components including 19 alcohols, 13 esters, 7 acids, 3 aldehydes, 1 alkanes, 2 ketones, 2 amines, 1 benzene, 1 alkene, 1 phenol and others were found in kochujang made by traditional method. The number of volatile components detected immediately after making kochujang were 22 and increased to 41 components after 30 day of fermentation. The most number 51 of volatile components were found after 120 day of fermentation. Twenty-two volatile components were commonly found through the fermentation period such as acetic acid ethyl ester, ethanol, butanoic acid ethyl ester, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, butanoic acid and ethenone. Peak area(%) of 1-butanol was the highest one among the volatile components at immediately after mashing while ethanol showed the highest peak area after 30 day of fermentation. Although the various types of peak areas of volatile components were shown in kochujang during the fermentation days, acetic acid-ethyl ester, ethanol, butanoic acid-ethyl ester, 1-butanol, 3-methyl-1-butanol and 2-methyl-1-propanol were mainly detected during fermentation. Those might be the major volatile components in kochujang made by traditional method.

  • PDF

Fermentation Characteristics of Low Salted Kochujang Prepared with Sub-materials (부원료를 첨가한 저식염 고추장의 발효특성 변화)

  • Kim, Dong-Han;Yang, Sung-Eun
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.97-104
    • /
    • 2004
  • Effects of sub-materials such as, ethanol, mustard, and chitosan, on enzymatic, microbial and physicochemical characteristics of kochujang were investigated during fermentation. Activity of ${\alpha}$-amylase was low in chitosan-added kochujang, whereas those of ${\beta}$-amylase and pretense did not show any remarkable difference. Viable cells of yeast and bacteria decreased in sub-material-added kochujang during fermentation, with yeast counts decreasing more rapidly in ethanol- and mustard-added kochujang than that with chitosan. Consistency of kochujang decreased during fermentation, with the highest consistency observed in ethanol-added kochujang. Oxidation-reduction potential was low in chitosan-added kochujang. Water activity of all kochujang groups decreased during fermentation with the lowest in ethanol-added kochujang. Hunter L-, a-, and b-values of chitosan-added kochujang were higher than other groups, whereas increase in total color difference of low-salt without sub-material group was lowest pH of kochujang was the highest in ethanol-added kochujang, whereas titratable acidity increased remarkably in chitosan-added group. Total sugar and reducing sugar contents of kochujang were high in ethanol-and mustard-added groups, whereas ethanol production decreased remarkably in mustard-added kochujang. Amino nitrogen content was highest in low-salt without sub-material kochujang during late aging period. Ammonia nitrogen content was lower in mustard-added kochujang. After 12 weeks of fermentation, ethanol-added kochujang was more acceptable than mustard-and chitosan-added groups in taste, color, and overall acceptabilities.

Development of Glucoamylase & Simultaneous Saccharification and Fermentation Process for High-yield Bioethanol (고효율 바이오 에탄올 생산을 위한 당화효소 개발 및 동시당화발효 공정 연구)

  • Choi, Gi-Wook;Han, Min-Hee;Kim, Yule
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.499-503
    • /
    • 2008
  • The bioethanol for use as a liquid fuel by fermentation of renewable biomass as an alternative to petroleum is important from the viewpoint of global environmental protection. Recently, many scientists have attempted to increase the productivity of bioethanol process by developing specific microorganism as well as optimizing the process conditions. In the present study, which is based on our previous investigation on the pretreatment process, theproductivity of bioethanol obtained from simultaneous saccharification and fermentation (SSF) process was compared between various domestic materials including barley, brown rice, corn and sweet potato. Additionally, Solid glucoamylase (SGA; developed in Changhae Co.), from modified strain with UV, was used. The result was compared to commercial glucoamylase (GA). It was observed that the fermentation rate was increased together with the yield which can be derived from the final ethanol concentration. Especially, in the case of brown rice, compared to the experimental results using GA, the final ethanol concentration was 1.25 times higher and 18.4 g/L of the yield was increased. Also, the time required for reaching 95% of the maximum ethanol concentration is significantly reduced, which is approximately 36 hours, compared to 88 hours using GA. It means that SGA has excellent saccharogenic power.

Effect of Oxygen and Unsaturated Fatty Acids on the Ethanol Tolerance of Yeast Strains

  • Ryu, Yeon-Woo;Jang, Heang-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.6-11
    • /
    • 1991
  • This study deals with investigation of the ethanol tolerance of yeast strains with respect to fatty acid composition and intracelluar ethanol concentration during alcohol fermentation. The cell viabilities and fermentation abilities of Saccharomyces cerevisiae and Kluyveromyces fragilis were improved by aeration and addition of unsaturated fatty acids into growth medium. Aeration decreases the accumulation of ethanol, while increases unsaturated fatty acid contents inside yeast cells. Thus it was found that oxygen and unsaturated fatty acids play decisive roles in the increase of ethanol tolerance of yeasts.

  • PDF

Kinetic Models for Growth and Product Formation on Multiple Substrates

  • Kwon, Yun-Joong;Engler, Cady R.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.587-592
    • /
    • 2005
  • Hydrolyzates from lignocellulosic biomass contain a mixture of simple sugars; the predominant ones being glucose, cellobiose and xylose. The fermentation of such mixtures to ethanol or other chemicals requires an understanding of how each of these substrates is utilized. Candida lusitaniae can efficiently produce ethanol from both glucose and cellobiose and is an attractive organism for ethanol production. Experiments were performed to obtain kinetic data for ethanol production from glucose, cellobiose and xylose. Various combinations were tested in order to determine kinetic behavior with multiple carbon sources. Glucose was shown to repress the utilization of cellobiose and xylose. However, cellobiose and xylose were simultaneously utilized after glucose depletion. Maximum volumetric ethanol production rates were 0.56, 0.33, and 0.003 g/L h from glucose, cellobiose and xylose, respectively. A kinetic model based on cAMP mediated catabolite repression was developed. This model adequately described the growth and ethanol production from a mixture of sugars in a batch culture.

Optimization of Fermentation Conditions for the Ethanol Production from Sweet Sorghum Juice by Saccharomyces cerevisiae using Response Surface Methodolgy (단수수 착즙액으로부터 에탄올 생산을 위한 반응표면분석법을 이용한 효모 발효조건 최적화)

  • Cha, Young-Lok;Park, Yu-Ri;Kim, Jung-Kon;Choi, Yong-Hwan;Moon, Youn-Ho;Bark, Surn-Teh;An, Gi-Hong;Koo, Bon-Cheol;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2011
  • Optimization of initial total sugar concentration of sweet sorghum juice, aeration time and aeration rate on ethanol production was performed by response surface methodology (RSM). The optimum conditions for ethanol production from concentrated sweet sorghum juice were determined as follows: initial total sugar concentration, 21.2 Brix; aeration time, 7.66h; aeration rate, 1.22 vvm. At the optimum conditions, the maximum ethanol yield was predicted to be 91.65% by model prediction. Similarly, 92.98% of ethanol yield was obtained by verification experiment using optimum conditions after 48 h of fermentation. This result was in agreement with the model prediction.

Bioethanol Production from Eucheuma spinosum using Various Yeasts (Eucheuma spinosum으로부터 다양한 효모를 이용한 바이오에탄올 생산)

  • Kim, Min-Ji;Kim, Jung-Soo;Ra, Chae Hun;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.315-318
    • /
    • 2013
  • Ethanol fermentations were performed using separate hydrolysis and fermentation (SHF) processes with monosaccharides from pretreated seaweed, Eucheuma spinosum as the biomass. The pretreatment was carried out with 11% (w/v) seaweed slurry and 150 mM $H_2SO_4$ at $121^{\circ}C$ for 40 min. Enzyme hydrolysis after $H_2SO_4$ pretreatment was performed with Celluclast 1.5 L at $45^{\circ}C$ for 24 h. Five % active charcoal were added to hydrolysate to removed 5-hydroxy methylfurfural. Ethanol fermentation with 11% (w/v) seaweed hydrolysate was performed for 72~96 h using Kluyvermyces marxianus, Pichia stipits, Saccharomyces cervisiae and Candida tropicalis. Ethanol concentration was reached to 18 g/L by K. marxianus, 16 g/L by P. stipitis, 15 g/L by S. cerevisiae and 10 g/L by C. tropicalis, respectively. The ethanol yield from total monosugar was obtained 0.50 and ethanol productivity was obtained 0.38 g/L/h by K. marxianus.