• Title/Summary/Keyword: Etching resistance

Search Result 225, Processing Time 0.028 seconds

Screening of spherical phosphors by electrophoretic deposition for full-color field emission display application

  • Kwon, Seung-Ho;Cho, sung-Hee;Yoo, Jae-Soo;Lee, Jong-Duk
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.79-84
    • /
    • 1999
  • the photolithographic patterning on an indium-tin oxide (ITO) glass and the electro-phoretic deposition were combined for preparing the screen of the full-color field emission display(FED). the patterns with a pixel of 400$\mu\textrm{m}$ on the ITO-glass were made by etching the ITO with well-prepared etchant consisting of HCL, H2O, and HNO3. Electrophoretic method was carried out in order to deposit each spherical red (R), green(G), and blue (B) phosphor on the patterned ITO-glass. The process parameters such as bias voltage, salt concentration, and deposition time were optimized to achieve clear boundaries. It was found that the etching process of ITO combined with electrophoretic method was cost-effective, provided distinct pattern, and even reduced process steps compared with conventional processes. The application of reverse bias to the dormant electrodes while depositing the phosphors on the stripe pattern was found to be very critical for preventing the cross-contamination of each phosphor in a pixel.

  • PDF

Fabrication of Superconducting Flux Flow Transistor using Plasma etching (플라즈마 식각을 이용한 초전도 자속 흐름 트랜지스터 제작)

  • 강형곤;임성훈;고석철;한윤봉;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.74-77
    • /
    • 2002
  • The channel of the superconducting Flux Flow Transistor has been fabricated with plasma etching method using ICP. The ICP conditions were 700 W of ICP power, 150 W of rf chuck power, 5 mTorr of the pressure in chamber and 1:1 of Ar : Cl$_2$, respectively. The channel etched by plasma gas showed superconducting characteristics of over 77 K and superior surface morphology. The critical current of SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained r$\sub$m/ values were smaller than 0.1Ω at a bias current of 40 mA. The current gain was about 0.5. Output resistance was below 0.2 Ω.

  • PDF

Micromachining Thin Metal Film Using Laser Photo Patterning Of Organic Self-Assembled Monolayers (유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 금속 박막의 미세 형상 가공 기술)

  • 최무진;장원석;신보성;김재구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.219-222
    • /
    • 2003
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated for applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecular and bio molecular. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance in selective etching of thin metal film of Self- Assembled Monolayers. In this report, we present the micromachining thin metal film by Mask-Less laser patterning of alknanethiolate Self-Assembled Monolayers.

  • PDF

APPLICATION OF DISPROPORTIONATION REACTION TO SURFACE TREATMENT

  • Oki, Takeo
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.478-481
    • /
    • 1996
  • Disproportionation reaction is very important and interesting reaction to be applied to such surface treatment as metal, alloy, compound coating, a surface etching and so on. In gaseous system, the reaction of Al chloride is applied to Al and Al alloy coating, and the similar reaction of Ti chloride is also used for Ti, Ti alloy and Ti compound coating. As for aqueous system, this reaction is utilized to such metal coat as Sn etc. and metal etching such as Cu, Fe and so on. Also in molten salts system, this reaction has many application for surface treatment like metal, alloy and compound coatings for corrosion, wear, heat resistance and so forth. For instance, carbide film, nitride film, boride film, alloy film, quite new different film from the components of substrate material are coated in single and multiple component film system by the disproportionation reaction.

  • PDF

Reactive Ion Etching Process of Low-K Methylsisesquioxane Insulator Film (저유전율 물질인 Methylsilsesquioxane의 반응 이온 식각 공정)

  • 정도현;이용수;이길헌;김대엽;김광훈;이희우;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.173-176
    • /
    • 1999
  • Continuing improvement of microprocessor performance involves in the devece size. This allow greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However this has led to propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance(RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. Becase of pattering MSSQ (Methylsilsequioxane), we use RIE(Reactive ton Etching) which is a good anisotrgpy. In this study, according as we control a flow rate of CF$_4$/O$_2$ gas, RF power, we analysis by using ${\alpha}$ -step, SEM and AFM,

  • PDF

Analysis of Lattice Temperature in Super Junction Trench Gate Power MOSFET as Changing Degree of Trench Etching

  • Lee, Byeong-Il;Geum, Jong Min;Jung, Eun Sik;Kang, Ey Goo;Kim, Yong-Tae;Sung, Man Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.263-267
    • /
    • 2014
  • Super junction trench gate power MOSFETs have been receiving attention in terms of the trade-off between breakdown voltage and on-resistance. The vertical structure of super junction trench gate power MOSFETs allows the on-resistance to be reduced compared with conventional Trench Gate Power MOSFETs. The heat release of devices is also decreased with the reduction of on-resistance. In this paper, Lattice Temperature of two devices, Trench Gate Power MOSFET and Super junction trench gate power MOSFET, are compared in several temperature circumstance with the same Breakdown Voltage and Cell-pitch. The devices were designed by 100V Breakdown voltage and measured from 250K Lattice Temperature. We have tried to investigate how much temperature rise in the same condition. According as temperature gap between top of devices and bottom of devices, Super junction trench gate power MOSFET has a tendency to generate lower heat release than Trench Gate Power MOSFET. This means that Super junction trench gate power MOSFET is superior for wide-temperature range operation. When trench etching process is applied for making P-pillar region, trench angle factor is also important component. Depending on trench angle, characteristics of Super junction device are changed. In this paper, we focus temperature characteristic as changing trench angle factor. Consequently, Trench angle factor don't have a great effect on temperature change.

Fabrication of Bump-type Probe Card Using Bulk Micromachining (벌크 마이크로머시닝을 이용한 Bump형 Probe Card의 제조)

  • 박창현;최원익;김용대;심준환;이종현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.661-669
    • /
    • 1999
  • A probe card is one of the most important pan of test systems as testing IC(integrated circuit) chips. This work was related to bump-type silicon vertical probe card which enabled simultaneous tests for multiple semiconductor chips. The probe consists of silicon cantilever with bump tip. In order to obtain optimum size of the cantilever, the dimensions were determined by FEM(finite element method) analysis. The probe was fabricated by RIE(reactive ion etching), isotropic etching, and bulk-micromachining using SDB(silicon direct bonding) wafer. The optimum height of the bump of the probe detemimed by FEM simulation was 30um. The optimum thickness, width, and length of the cantilever were 20 $\mum$, 100 $\mum$,and 400 $\mum$,respectively. Contact resistance of the fabricated probe card measured at contact resistance testing was less than $2\Omega$. It was also confirmed that its life time was more than 20,000 contacts because there was no change of contact resistance after 20,000 contacts.

  • PDF

Effects of Specimen Preparation Method and Contact Resistance on the Formation of Anodizing Films on Aluminum Alloys (시편의 준비 방법 및 접촉저항이 알루미늄 합금의 아노다이징 피막 형성에 미치는 영향)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • In this study, five different specimen preparation methods were introduced and their advantages and disadvantages were presented. One of them, an epoxy mounting method has advantages of constant exposure area, ease of surface preparation without touching the specimen surface during polishing or cleaning, use of small amount of material and ease of specimen reuse by polishing or etching. However, in order to eliminate unexpected errors resulting from preferable reaction at the specimen/epoxy interface and contact resistance between the specimen and copper conducting line for electrical connection, it is recommended to cover the wall side of the specimen with porous anodic oxide films and to remain the contact resistance lower than 1 ohm. The increased contact resistance between the specimen and Cu conducting line appeared to result in increases of anodizing voltage and solution temperature during anodizing by which thickness and hardness of anodizing film on Al2024 alloy were drastically decreased and color of the films became more brightened.

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

Effect of Sulfuric Acid Addition on the Aluminum AC Etching in HCl Solution (염산용액내에 황산 첨가에 의한 알루미늄의 교류에칭 특성)

  • Kim, Hangyoung;Choi, Jinsub;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.463-468
    • /
    • 1998
  • When sulfuric acid was added in HCl etching solution, corrosion of aluminum metal was inhibited by the chemical adsorption of sulfate ions. In the presence of $SO_4^{-2}$, cyclic voltammetry showed that the protective oxide film was formed on the inner surfaces of etch pits and, pit density was increased by nucleation on both the aluminum surface and the pits inside. Structure and distribution of etch pits found in AC etching of aluminum were strongly influenced by the concentration of $SO_4^{-2}$ and the amount of cathodic pulse charging. Below $0.8mC/cm^2$ of cathodic pulse charging, oxide films formed inside actively dissolving pits indicated the higher resistance to pit nucleation as the concentration of $SO_4^{-2}$ increases. However, the structural change of oxide films occurred above the $0.8mC/cm^2$ charging and the effect of $SO_4^{-2}$ was minimized, and it resulted in the rapid formation of etch pits.

  • PDF