• Title/Summary/Keyword: Etching rate

Search Result 785, Processing Time 0.028 seconds

Comparison of Etching Rate Uniformity of $SiO_2$ Film Using Various Wet Etching Method ($SiO_2$막의 습식식각 방법별 균일도 비교)

  • Ahn, Young-Ki;Kim, Hyun-Jong;Sung, Bo-Ram-Chan;Koo, Kyo-Woog;Cho, Jung-Keun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.41-46
    • /
    • 2006
  • Wet etching process in recent semiconductor manufacturing is devided into batch and single wafer type. Batch type wet etching process provides more throughput with poor etching uniformity compared to single wafer type process. Single wafer process achieves better etching uniformity by boom-swing injected chemical on rotating wafer. In this study, etching characteristics of $SiO_2$ layer at room and elevated temperature is evaluated and compared. The difference in etching rate and uniformity of each condition is identified, and the temperature profile of injected chemical is theoretically calculated and compared to that of experimental result. Better etching uniformity is observed with single wafer tool with boom-swing injection compared to single wafer process without boom-swing or batch type tool.

  • PDF

The Fabrication of Megasonic Agitated Module(MAM) for the Improved Characteristics of Wet Etching

  • Park, Tae-Gyu;Yang, Sang-Sik;Han, Dong-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.271-275
    • /
    • 2008
  • The MAM(Megasonic Agitated Module) has been fabricated for improving the characteristics of wet etching. The characteristics of the MAM are investigated during the wet etching with and without megasonic agitation in this paper. The adoption of the MAM has improved the characteristics of wet etching, such as the etch rate, etch uniformity, and surface roughness. Especially, the etching uniformity on the entire wafer was less than ${\pm}1%$ in both cases of Si and glass. Generally, the initial root-mean-square roughness($R_{rms}$) of the single crystal silicon was 0.23nm. Roughnesses of 566nm and 66nm have been achieved with magnetic stirring and ultrasonic agitation, respectively, by some researchers. In this paper, the roughness of the etched Si surface is less than 60 nm. Wet etching of silicon with megasonic agitation can maintain nearly the original surface roughness during etching. The results verified that megasonic agitation is an effective way to improve etching characteristics of the etch rate, etch uniformity, and surface roughness and that the developed micromachining system is suitable for the fabrication of devices with complex structures.

Characterization of Deep Dry Etching of Silicon Single Crystal by HDP (HDP를 이용한 실리콘 단결정 Deep Dry Etching에 관한 특성)

  • 박우정;김장현;김용탁;백형기;서수정;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.570-575
    • /
    • 2002
  • The present tendency of electrical and electronics is concentrated on MEMS devices for advantage of miniaturization, intergration, low electric power and low cost. Therefore it is essential that high aspect ratio and high etch rate by HDP technology development, so that silicon deep trench etching reactions was studied by ICP equipment. Deep trench etching of silicon was investigated as function of platen power, etch step time of etch/passivation cycle time and SF$\_$6/:C$_4$F$\_$8/ flow rate. Their effects on etch profile, scallops, etch rate, uniformity and selectivity were also studied.

A Comparative Study on the Influence of Etchant upon the Etching Rate and Quality in Laser Induced Wet Etching of Fused Silica (식각액에 따른 용융실리카의 레이저 습식 식각 특성 비교 연구)

  • 이종호;이종길;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.268-272
    • /
    • 2004
  • Transparent materials such as fused silica are widely utilized in optical and optoelectronics field because of its outstanding properties, such as transparency in a wide wavelength range, strong damage resistance for laser irradiation, and high thermal and chemical stability. In this study, we made a few micro patterns on the surface of fused silica plate using laser induced wet etching. KrF excimer laser was used as a light source. There were no burrs and micro cracks on the etched surface of fused silica and the flatness of the etched surface was fairly good. We investigated the influence of etchant upon the etch rate and quality in laser induced wet etching. Pyrene-acetone solution and toluene were used as etchant. In the side of etch rate, toluene solution was better than pyrene-acetone solution. But we made in wider range of energy density using pyrene-acetone solution. But pyrene-acetone solution gave us wider window of energy density for successful micro patterning.

Laser-induced etching of GaAs with CFC alternatives (CFC 대체물질을 이용한 GaAs의 레이저 유도 에칭)

  • Park, Se-Ki;Lee, Cheon;Kim, Moo-Sung
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.240-245
    • /
    • 1996
  • Non-ozone layer destructive Chlorofluorocarbon(CFC) altematives(CHCIF$_{2}$ and $C_{2}$H$_{2}$F$_{4}$) have been initially used for laser-induced thenrmochemical etching of GaAs. High etching rate up to 188.mu.m/sec and an aspect ratio of 2.7 have been achieved by a single scan of laser beam, respectively. The etching rate at constant ambient gas pressure was found to saturate for beam power. The chemical compositions of the reaction products deposited on the etched groove were measured by Auger electron microscopy(AES). Etched profile, depth and width were observed by scanning electron microscope(SEM).

  • PDF

TMAH/IPA Anisotropic Etching Characteristics with Addition of Pyrazine (Pyrazine이 첨가된 TMAH/IPA 이방성 식각특성)

  • 박진성;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.23-26
    • /
    • 1997
  • This work presents the TMAH/IPA anisotropic etching characteristics with addition of Pyrazine. (100) Si etching rate of 0.747 ${\mu}{\textrm}{m}$/min at 8$0^{\circ}C$ was obtained using TMAH 25 wt.% / IPA 17 vol.% / pyrazine 0.1 g. The etching rate of (100) Si is increased about 52% compare to pure TMAH 25 wt.%. But etching rate of (100) Si is decreased with increasing Pyrazine additive. Activation energy of TMAH/IPA/pyrazine is much lower than TMAH and TMAH/IPA solutions. Addition of Pyrazine does not effect on surface flatness and decreases undercutting ratio about 20 %. Therefore, TMAH/IPA/pyrazine is an attractive anisotropic etchant because of alkaline-ion free.

  • PDF

Satistical Analysis of SiO2 Contact Hole Etching in a Magnetically Enhanced Reactive Ion Etching Reactor

  • Liu, Chunli;Shrauner, B.
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.132-137
    • /
    • 2010
  • Plasma etching of $SiO_2$ contact holes was statistically analyzed by a fractional factorial experimental design. The analysis revealed the dependence of the etch rate and DC self-bias voltage on the input factors of the magnetically enhanced reactive ion etching reactor, including gas pressure, magnetic field, and the gas flow rates of $CHF_3$, $CF_4$, and Ar. Empirical models of the DC self-bias voltage and etch rate were obtained. The DC self-bias voltage was found to be determined mainly by the operating pressure and the magnetic field, and the etch rate was related mainly to the pressure and the flow rates of Ar and $CHF_3$.

A Study on the Preparation and Resist Characterization of the Plasma Polymerized Thin Films (플라즈마중합막의제작과레지스트 특성에 관한 연구)

  • 이덕출;박종관;한상옥;김종석;조성욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.802-808
    • /
    • 1994
  • The purpose of this paper is to describe an application of plasma polymerized thin film as an electron beam resist. Plasma polymerized thin film was prepared using an interelectrode capacitively coupled gas-flow-type reactor, and chosen methylmethacrylate(MMA)and methylmethacrylate-tetrameth-yltin(MMA-TMT) as a monomer. This thin films were also delineated by the electron-beam apparatus with an acceleration voltage of 30kV and an expose dose ranging from 20 to 900$\mu$C/cmS02T. The delineated pattern in the resist was developed with the same reactor which is used for polymerization using an argon as etching gas. The growth rate and etching rate of the thin film is increased with increasing of discharge power. Thin films by plasma polymerization show polymerization rate of 30~45($\pm$3) A/min, and etching rate of 440($\pm$30) A/min during Ar plasma etching at discharge power of 100W. In apparently lower than that of conventional PMMA, but the plasma-etching rate of PP(MMA-TMT) was higher than that of PPMMA.

  • PDF

Effects of $C_2F_{6}$ Gas on Via Etching Characteristics ($C_2F_{6}$ 가스가 Via Etching 특성에 미치는 영향)

  • Ryu, Ji-Hyeong;Park, Jae-Don;Yun, Gi-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • In order to improve the 0.35 $mutextrm{m}$-via hole etching process the etching characteristic of the gas $C_2F_{6}$ has been analyzed. The samples were triple-layer films(TEOS/SOG/TEOS) on 8-inch wafers and the orthogonal array matrix technique was used for the process. The equipment for etching was the transformer coupled plasma (TCP) source which is a type of high density plasma(HDP). This experiment showed the etching rate for $C_2F_{6}$ was 0.8 $mutextrm{m}$/min-1.1 $mutextrm{m}$/min and the measured uniformity was under $pm$6.9% in the matrix window. The CD skew comparison between pre and post-etching was under 10% which is an outstanding results in the window of profile in anisotropic etching. There was no problem in C2F6 with the flow rate of 20sccm, but when 14sccm of $C_2F_{6}$ was supplied there was a recess problem on the inner wall of SOG film. Consequently the etching characteristic of $C_2F_{6}$ shows a fast etching rate and a very wide process window in HDP TCP.

A study on anisotropic etching property of single-crystal silicon using KOH solution (KOH 용액을 이용한 단결정 실리콘의 이방성 식각특성에 관한 연구)

  • 김환영;천인호;김창교;조남인
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.449-455
    • /
    • 1997
  • The anisotropic etching behavior of single crystal silicon were studied in aqueous KOH solution. N-type (100) oriented single crystal silicon wafers were used for the study, and the $SiO_2$ layer, whose etching rate is known to be much slower than that of silicon in the KOH solution, was used as a mask for the silicon etching. The silicon etching rate and the etching properties are shown to be a function of etchant temperature uniformity, circulation speed, and circulation direction of the etchant as well as the etchant concentration and the temperature. The etching rate is increased as the temperature is increased from $10\mu \textrm{m}/hr$ to $250\mu \textrm{m}/hr$ in the range of $50^{\circ}C~105^{\circ}C$. Hillock density and height is observed to be correlated with the etchant concentration and the etch temperature. The variation of the hillock density was explained by the ratio between the etching rate of (100) orientation and that of (111) orientation.

  • PDF