• Title/Summary/Keyword: Estuary ecosystem

Search Result 106, Processing Time 0.024 seconds

A Study of the Development of Wetland Database for the Nakdong River Estuary using GIS and RS (GIS와 원격탐사를 이용한 낙동강 하구 습지 데이터베이스 구축에 관한 연구)

  • Yi, Gi-Chul;Yoon, Hae-Soon;Kim, Seung-Hwan;Nam, Chun-Hee;Ok, Jin-A
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.1-15
    • /
    • 1999
  • This study was carried out to find out the way to build a comprehensive wetland ecosystem database using the technique of remote sensing and geographic information system. A Landsat TM image taken in May 17, 1997 was used for the primary source for the image analysis. Field surveys were conducted March to September of 1998 to help image analysis and examine the results. An actual wetland vegetation map was created based on the field survey. A Landsat TM image was analyzed by unsupervised and supervised classification methods and finally categorized into such 5 classes as Phragmites australis community, mixed community, sand beach, Scirpus trigueter community and non-vegetation intertidal area. Wetland basemap was developed for the overall accuracy assesment in wetland mapping. Vegetation index map of wetland vegetation was developed using NDVI(normalized difference vegetation index). The map of wetland productivity was developed based on the productivity of Phragmites australis and the relationship to the proximity of adjacent water bodies. The map of potential vegetation succession map was also developed based on the experience and knowledge of the field biologists. Considering these results, it is possible to use the remote sensing and GIS techniques for producing wetland ecosystem database. This study indicated that these techniques are very effective for the development of the national wetland inventory in Korea.

  • PDF

Spatio-temporal Variation of Fish Communities in Open Estuary, Seomjin River Estuary and Gwangyang Bay Coast (열린 하구인 섬진강 하구 및 광양만 연안 어류 군집의 시공간적 변화)

  • Sun Ho Lee;Won-Seok Kim;Jae-Won Park;Hyunbin Jo;Wan-Ok Lee;Tae Sik Yu;Hyo Gyeom Kim;Chang Woo Ji;Ihn-Sil Kwak
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.132-144
    • /
    • 2022
  • The fish community in the Seomjin River-Seomjin River Estuary-Gwangyang Bay coast continuum was investigated three times from March 2019 to October 2019. The collected species at the eight sites during the survey period were 49 species belonging to 31 families, including two endangered species. According to Bray-Curtis similarities, observations were divided into four groups based on the fish community composition; two groups (group 1, 2) and two uncategorized groups (group 3, 4). ANOSIM based on spatial and temporal groupings indicated that the spatial differences in fish communities (R=0.398, P=0.001) were relatively more important than the temporal differences (analysis of similarities, R=0.273, P=0.002). In particular, there were significant differences between groups 1 and 2 (analysis of similarities, R=0.556, P=0.001), and similarity percentage analysis revealed that Argyrosomus argentatus (9.4%), Favonigobius gymnauchen (6.9%) and Konosirus punctatus (5.9%) contributed to these differences of fish assemblages for each group. The fish fauna distributed in the Seomjin River-Gwangyang Bay ecosystem were spatially divided and the number of species and number of individuals showed seasonal differences. This study could be a basis for understanding changes in the fish community and implementing conservation and management strategies on major species within a continuous environment of the river-estuary-ocean continuum.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

Decomposition Characteristic of Sedimentary Organic Matters by Bacteria (세균에 의한 퇴적유기물의 분해 특성에 관한 연구)

  • Shin, Woo-Seok;Kang, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.132-136
    • /
    • 2011
  • The Temporal variability in the food chain structure of bacteria in the sedimentary organic matter was investigated using stable isotope and fatty acid. Potential organic matter sources (Land plant, Marine POM, benthic microalgae, Riverine POM), sedimentary organic matter and bacteria were sampled in Gamo largoon and Nanakita estuary. The main objective of the present study was to determine food sources of bacteria along with temporal variability. Land plant (${\delta}^{13}C$ = -26.6‰ and ${\delta}^{15}N$ = 3.6‰) and Riverine POM (${\delta}^{13}C$ = -25.5‰ and ${\delta}^{15}N$ = 8.9‰) were isotopically distinct from benthic microalgae (${\delta}^{13}C$ = -16.3‰ and ${\delta}^{15}N$ = 6.2‰) and Marine POM (${\delta}^{13}C$ = -20.3‰ and ${\delta}^{15}N$ = 10.3‰). ${\delta}^{13}C$ values of sedimentary organic matter showed a distinct gradient in the range of -20.7‰ to -191‰. The stable carbon and nitrogen isotope values of bacteria in the study were -20.8‰ to -18.6‰ for ${\delta}^{13}C$ and 6.5‰ to 8.6‰ for ${\delta}^{15}N$. From this results based on stable isotope measurements showed that in the bacteria was found to be dominated by Marine POM and Benthicmicoralge during 0 to 20 day. Whereas, terrestrial plant and riverine POM showed little in fluence to bacteria during the experiment.

Determination of Trophic Position Using Nitrogen Isotope Ration of Individual Amino Acid in the Geum Estuary (금강 하구 생태계에서 아미노산의 질소 안정동위원소비를 이용한 섭식생물의 영양단계 파악)

  • Choi, Hyuntae;Choi, Bohyung;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.432-440
    • /
    • 2017
  • Compound specific isotope analysis of amino acids (CSIA-AAs) is being highlighted as an alternative approach for overcoming some restrictions in application of stable isotope analysis of bulk tissue (SIA) for trophic position (TP) estimation. However, this approach has rarely been applied in Korea. The present study determines TP of two Polychaeta (Nephtyidae and Glyceridae) and two fish species(Platycephalus indicus and Lophius litulon) collected from the Geum River estuary using nitrogen isotope ratio of amino acid and compared with the TP values estimated by SIA. The Polychaeta species, sampled in two sites, showed similar TP between SIA(2.7 and 3.1) and CSIA-AAs (2.6 and 3.1). However, for both fish species, TP values displayed a large difference between SIA (3.1 and 2.3) and CSIA-AAs (3.8 and 3.7). In this study TP values estimated by CSIA-AAs showed more similar to the previously reported gut content analysis of both fishes compared with the results of SIA. Current study suggests the applicability of nitrogen isotope ratio of amino acid to understand coastal ecosystem structure and trophic ecology.

Looking for an Adequate Methodology for the Korean Reservoir Using Canonical Correspondence Analysis (CCA를 통한 한국 호소 연구 방법론 탐색)

  • Chung, Sang-Ok;Jeon, Hyoung-Joo;Hong, Kwan-Eui;Kim, Jong-Hwa;Park, Young-Seuk
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.365-373
    • /
    • 2006
  • With a few exceptions, Korean lakes are artificially constructed for multi-purposes throughout the country. In the majority of cases, a lake is in a multiple series of reservoirs along a river or is an estuary Moreover, nutrient supplying activities (including sand extraction) and biomanipulation(esp., overfishing and fish introduction) are omnipresent in most cases. Furthermore, there is an Asian monsoon every year. In brief, europhication and algal blooms break out as a result of complicated causes. However limnological monitoring and scientific working programs are in the course of beginning. The question is what kind of strategy is desirable to establish a solid limnological database for the efficiency of the restoration process in each Korean reservoir We present light monitoring cases on the basis of algal and some physicochemical data in 2005. Do they give some useful informations despite their simplicity. Based on physicochemical factors and phytoplankton data using Utermohl method and Canonical Correspondence Analysis(CCA) were performed for Lake Cheongpyeong, Lake ASan, Lake Namyang, and Lake SapGyo. The results of CCA showed that Lake Cheongpyeong was different from the other three Lakes at estuary. Also each Lake at estuary was slightly different from one other. This result would encourage to initiate building an adequate Korean reservoir-ecosystem understanding and models for better ecological management despite the limited data. However, the results also indicate to sustain collecting ecological data and building database to interpret the Korean ecological reservoir model.

Molecular Phylogenetic Analysis of the Brackish Water Clam (Corbicular japonica) from Seomjin River to Gwangyang Bay, South Korea (섬진강-광양만 하구 기수 재첩 (Corbicular japonica)의 분자 계통유전학적 분석)

  • Ji-Hoon Kim;Won-Seok Kim;Kiyun Park;Ihn-Sil Kwak
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.212-220
    • /
    • 2022
  • An estuary is a water ecosystem with a high abundance of the species diversity, due to a variety of complex physicochemical factors of the area where freshwater and ocean mixed. The identification of Corbicula species in the estuary environments is difficult because of various morphological characteristics. In this study, we provide taxonomic information on Corbicula species with taxonomic difficulties using morphological and genetic analysis. This study was conducted on clams from the Seomjin River-Gwangyang Bay, one of the major production area of marsh clam in Korea. As a result, we characterized Cytocrome C Oxidase subunit I (COI) sequences of the Corbicula. The 636 bp nucleotide sequences of COI have 98% homology among Corbicula species collected from 2 sites of Seomjin River-Gwangyang Bay. The phylogenetic analysis with 17 species of Corbicula indicated that most of the species collected from Seomjin River-Gwangyang Bay were brackish water clam (Corbicula japonica), and only one Asian clam (Corbicula fluminea). The evolutionary distance between C. japonica and C. fluminea was less than 0.003. Therefore, it was confirmed that C. japonica is phylogenetically closely related to C. fluminea. In 9 species of Cyrenidae, phylogenetic tree was classified into three lineages. These results will be used as an important data for an identification of clam species by providing genetic information for Corbicula species with a morphological diversity.

Distribution and Botanical Characteristics of Unrecorded Alien Weed Spartina anglica in Korea (미기록 외래잡초 영국갯끈풀의 국내 분포와 식물학적 특성)

  • Kim, Eun-Kyu;Kil, Jihyon;Joo, Young-Kyoo;Jung, Young-Sang
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.65-70
    • /
    • 2015
  • We have found the plants belonging to the genus Spartina which has not yet been reported for the flora of Korea. This has been distributed at Dongmak seashore in Ganghwado since 2012. These were identified as common cordgrass (Spartina anglica C. E. Hubb.) belonging to the family Poaceae, the genus Spartina. It is a perennial halophyte as an alien weed that can grow in the tidal flat, native to southern England. Here, we named it for 'Young-guk-Gaet-ggeun-pool' in Korean refer the origin, reported the distribution, spreading condition, and botanical characteristics of common cordgrass. In China, Spartina anglica was introduced in 1963, it was approved that it had benefit in a bioengineering side firstly. But it was known that as a highly invasive plant to make a monotype meadow of Spartina anglica which has deteriorate the ecological function of saltmarsh. And also it has another problem that is not easy to eradicate. The spreading of Spartina anglica which was appeared in the West coast of Korea may threaten severely to the domestic mudflat and estuary ecosystem. For the maintenance of mudflat ecosystem soundly, continuous monitoring and active eradication plans are required.

A Preliminary Trophic Flow Model for Gwangyang Bay, Korea (광양만 예비 영양류 모형)

  • Kang, Yun-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.3
    • /
    • pp.184-195
    • /
    • 2005
  • A preliminary quantitative model of the trophic structure in Gwangyang bay, Korea was obtained using ECOPATH and data from relevant studies to date in the region. The model integrates and analyzes biomass, food spectrum, trophic interactions and the key trophic pathways of the system. The bay model comprises 9 groups of benthic primary producer, phytoplankton, zooplankton, benthos, bivalve, pelagic fish, demersal fish and piscivorous fish. The total system throughput was estimated at $2.4\;kgWW/m^2/yr$, including a consumption of $41\%$, exports of $9\%$, respiratory flows of $24\%$ and flows into detritus of $26\%$. All of which originate from primary producers measured at $52\%$ and detritus of $48\%$. The total biomass was seen to be high compared to the levels of Somme, Delaware, Chesapeake Bays and Seine Estuary. This seems to be possibly due to artificial bivalve aquaculture and overestimation of benthos and benthic primary producer groups. The deviation can be calibrated by neglecting aquaculture and decreasing the habitat area for the groups. The trophic network of the bay shows a low level of recycling and organization as indicated by Finn's cycling index $3.3\%$, Ascendancy $3.1\;kgC/m^2/yr$ bits, Capacity $5.1\;kgC/m^2/yr$ bits and Redundancy $2.2\;kgC/m^2/yr$ bits. A high relative ascendancy of $62\%$ and a low internal relative ascendancy of $18\%$ indicate the system is not fully organized and stable towards disturbances, depending upon external connections. Although the model should be continuously provided with field data and calibrated further in depth, this study is the first trophic model applied to the region. The model can be a useful tool to understand the ecosystem in a quantitative manner.

Emergy Evaluation Overview of the Natural Environment and Economy of the Han River basin in Korea (한강유역의 자연환경과 사회경제활동에 대한 에머지 평가 - 한강유역 및 한강하구 관리를 위한 정책제언 -)

  • Kang, Dae-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.138-147
    • /
    • 2007
  • An emergy concept was used to evaluate the environment and economy of the Han River basin in Korea and to suggest policy perspectives far the sustainable utilization of its environment and associated estuarine ecosystem. The economy of the basin used $5.19{\times}10^{23}\;sej/yr$ of emergy in 2005. The economy of the Han River basin was heavily dependent on outside energy sources from foreign countries and other parts of Korea, with internal sources, renewable and nonrenewable, contributing only 15.6% to the total emergy use. The basin's trade balance in terms of emergy showed trade surplus, whereas there was a deficit in monetary terms. The population of the Han River basin was far greater than the carrying capacity calculated using the emergy flow, with renewable carrying capacity only at 1.8% of the basin's population and developed carrying capacity at 14.3%. The economy of the basin imposed a substantial stress on its environment, with an environmental loading ratio of 54.8. Overall, the economy of the Han River basin was not sustainable with an emergy sustainability of 0.02. These are reflected in lower quality of living expressed in the emergy term than the national average. Deconcentration of population and economic activities is needed to reduce environmental stress on the environment of the basin and its valuable estuarine ecosystem. Policies to restore ecosystem productivity of the basin are also needed to ensure the sustainability of the basin's economic activities and the sustainable utilization of the Han River estuary. In this regard, it is urgently needed for the Korean government to implement sustainable management measures for the Han River estuary, a well-preserved, productive natural estuarine ecosystem in Korea.

  • PDF