• Title/Summary/Keyword: Estuary Dam

Search Result 87, Processing Time 0.031 seconds

Analysis of Saltwater Intrusion by Flushing Discharge in the Seomjin River Estuary (Flushing 방류로 인한 섬진강 하구부 염수침입 영향분석)

  • Noh, Joonwoo;Lee, Jin-Young;Shin, Jae-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2011
  • Estuary is a transitional zone between river and ocean environment that receives the maritime and riverine influence simultaneously. Estuaries are the most productive habitats because their incoming water provides large quantities of nutrients. The Seomjin River estuary, located in the middle south of Korea, has no barrage and shows natural characteristic of estuary. However, due to dredging and reclamation the environment of the estuary has been changed significantly in the river mouth. In addition, increased freshwater intake in midstream of the Seomjin River results in salinity intrusion. In this paper salinity variation in downstream estuary of the Seomjin River has been simulated and tested using EFDC model. The results of simulation were compared with measured data collected at three points, Culture & Art Center, Sumjin Iron Bridge, and Mokdori, located at 9Km, 14Km, and 15.5Km respectively from downstream estuary. Based on the simulated results, the contribution of the flushing discharge has been evaluated in preventing the salinity intrusion by increasing the discharge flowrates released from the Juam dam.

Development of Real-Time Forecasting and Management System for the Youngsan Estuary Dam (영산강 하구둑 실시간 홍수예보 및 관리시스템 개발)

  • Kang, Min-Goo;Park, Seung-Woo;Her, Young-Gu;Park, Chang-Eun;Kang, Moon-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.285-288
    • /
    • 2002
  • For real-time flood forecasting and effective control flood at the Youngsan estuary dam, the Flood Forecasting and Control User Interface System II (FFCUS II) has been developed. This paper describes the features and application of FFCUS II. FFCUS II is composed of the database management subsystem, the model subsystem, and the graphic user interface. The database management subsyem collects rainfall data and stream flow data, updates, processes, and searches the data. The model subsystem predicts the inflow hydrograph, the tide, forecasts flood hydrograph, and simulates the release rate from the sluice gates. The graphic user interface subsystem aids the user's decision-making process by displaying the operation results of the database management subsystem and model subsystem.

  • PDF

Real-Time Flood Forecasting System For the Keum River Estuary Dam(I) -System Development- (금강하구둑 홍수예경보 시스템 개발(I) -시스템의 구성-)

  • 정하우;이남호;김현영;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.79-87
    • /
    • 1994
  • A real-time flood forecasting system(FLOFS) was developed for the real-time and predictive determination of flood discharges and stages, and to aid in flood management decisions in the Keum River Estuary Dam. The system consists of three subsystems : data subsystem, model subsystem, and user subsystem. The data subsystem controls and manages data transmitted from telemetering systems and simulated by models. The model subsystem combines various techniques for rainfall-runoff modeling, tidal-level forecasting modeling, one-dimensional unsteady flood routing, Kalman filtering, and autoregressivemovingaverage(ARMA) modeling. The user subsystem in a menu-driven and man-machine interface system.

  • PDF

Real-Time Flood Forecasting System For the Keum River Estuary Dam(II) -System Application- (금강하구둑 홍수예경보시스템 개발(II) -시스템의 적용-)

  • 정하우;이남호;김현영;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.60-66
    • /
    • 1994
  • This paper is to validate the proposed models for the real-time forecasting for the Keum river estuary dam such as tidal-level forecasting model, one-dimensional unsteady flood routing model, and Kalman filter models. The tidal-level forecasting model was based on semi-range and phase lag of four tidal constituents. The dynamic wave routing model was based on an implicit finite difference solution of the complete one-dimensional St. Venant equations of unsteady flow. The Kalman filter model was composed of a processing equation and adaptive filtering algorithm. The processng equations are second ordpr autoregressive model and autoregressive moving average model. Simulated results of the models were compared with field data and were reviewed.

  • PDF

Estimation of the Expected Socio-economic Benefits of the Largescale Comprehensive Agricultural Development Project and Jointcost Allocation -In the Case of Kumgang Project Area- (대단위 농업종합개발사업의 사회경제적 기대편익 추정과 결합비용의 배분 -금강지구를 중심으로-)

  • Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.159-176
    • /
    • 1996
  • This study is aimed at reviewing the methods of joint cost allocation and allocating the joint cost of estuary dam with specially repect to Kumgang Large-scale Agricultural Comprehensive Development Project. Apart from the water resource development project propelled by Water Resource Development Corporation in connection with Law of Multipurpose Dam Development, the Largescale Comprehensive Agricultural Development Projects couldn't ins-titutionally be carried out cost allocation of common facilities, even though it were concerned with irrigation, municipal and industrical water supply, flood control, sightseeing and industrial zone development components. To decrease farmer's burden of the project costs and, operation and maintenance costs, the joint costs of common facilities like estuary dam included in agricultural development projects have to be allocated by suitable method as alternative cost-remaining benefit method and the analytical activity should be supported by revising the concerned laws as Rural Development and Promotion and, Rural Rearrangement conpatible with the law for multipurpose dam development. Kumgang Agricultural Comprehensive Development Project was selected as a case study for the estimation of socio-economic benefits by project components and joint cost allocation of the estuary dam. The main results of the study are as follows; Joint cost allocation and unit charges by components 1. The project area will be 25,554ha with total project cost of 624,860 million won including the estuary dam cost of 120,843 million won. The project costs were ex-pressed by 1994 constant price. 2. Total quantity of water was estimated 365 million tons which were consisted of 245 million tons for irrigation, 73 million tons for municipal water and 47 million tons for industrial water. 3. The rates of joint cost allocation were amounted to 34.2% for agriculture, 2.5% for sightseeing, 45.7% for transportation, 11.8% for M & I water supply and 5.8% for flood control respectively. 4. The unit financial charges by project components were estimated at 7.88 won per ton for irrigation, 16.11won for M & I water, 1,686won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The financial charges using straitline method for depreciation were estimated at 7.88won per ton for irrigation, 9.12won per ton for M & I water, 624won per vehicle one pass for transportation and 331won per Pyeong for sightseeing area. 5. The unit economic charges by project components were estimated at 21.1 won per ton for irrigation, 15.2won for M & I water, 977won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The economic charges using straitline method for depreciation were estimated at 11.72won per ton for irrigation, 8.61won per ton for M & I water, 331won per vehicle one pass for transportation. Policy recommendation 1. The unit operation and maintenance costs for irrigation water in the paddy field couldn't be imposed as the water resource cost untreated. 2. The dam costs including investment cost and O & M cost, as a joint cost, had to be allocated by each benefited components as transportation, M & I water supply, flood control, irrigation and drainage, and sightseeing. But the agricultural comprehensive project have been dealt as an irrigation project without any appraisal socio-economic benefits and any allocating the joint cost of estuary dam. 3. All the associated project benefits and costs must be evaluated based on accounting principle and rent recovery rate of the project costs and O & M costs should be regulated by the laws concerned. 4. The rural development and promotion law and rural rearrangement law have to be revised comprising joint cost allocation considering free rider problems. 5. The government subsidy for the agricultural base development project has to be covered all the project costs. In case of common facilities representing joint cost allocation problems, all the allocated casts for other purposes like transportation and M & I water supply etc. should be recovered for formation in investment fund for agricultural base development and to procure O & M costs for irrigation facilities.

  • PDF

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam (담수호 홍수관리를 위한 상류 유입량 실시간 예측)

  • Kang, Min-Goo;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1061-1072
    • /
    • 2005
  • A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.

Tracing Source and Concentration of Riverine Organic Carbon Transporting from Tamjin River to Gangjin Bay, Korea (탐진강-강진만의 댐하류 열린하구 시스템에서 유기탄소의 조성 및 기원 변화 연구)

  • Park, Hyung-Geun;Kang, Dong-Won;Shin, Kyung-Hoon;Ock, Giyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.422-431
    • /
    • 2017
  • The biogeochemical information of riverine organic matter gives a detailed and integrated recording of natural and anthropogenic activity within a watershed. To investigate the changes in quality and quantity of organic carbon transporting from mountain to ocean via river channels, we estimated the concentrations of dissolved (DOC) and particulate organic carbon (POC), and then traced the source origin of POC using stable carbon isotopes ratio before and after summer rainfalls in the Tamjin River and Ganjin Bay, Korea. Along the small watershed, a total of 13 sites including headwaters, dam reservoir, river and estuary were established for the study. We found some interesting findings in the aspect of distribution of DOC/POC concentration changing their origin sources dynamically flowing downstream. In particular, the river channel transport downstream mainly DOC to river mouth, although upper dam reservoir increased POC concentration by phytoplankton production in summer. Whereas, in the river mouth and estuary, POC was dominated not only by local supply from nearby reed saltmarsh, but also by marine phytoplankton production, respectively. The findings can contribute to increasing the understanding of riverine organic carbon transport in upper large dam and lower open estuary system.

Change of Oceanographic Environment in the Nakdong Estuary (낙동강 하구에서의 해양 환경 변화)

  • JANG SUNG-TAE;KIM KI-CHEOL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.1
    • /
    • pp.11-20
    • /
    • 2006
  • The Nakdong Estuary is complex water system, where sea water and fresh water meet each other. It has undergone the significant change of its environmental conditions since the construction of the Nakdong River Barrier in 1987. Prior to its construction, mixing and circulation processes in the Nakdong Estuary was dominated by tidal current. However, after the dam construction, those processes were greatly altered by the artificial control of the fresh river water discharge. In this paper, the influence of opening and closing the floodgate of Nakdong River on the outflow behavior of estuarine water from the Nakdong Estuary is analyzed in detail.

River Flow Forecasting Model for the Youngsan Estuary Reservoir Operation(III) - Pronagation of Flood Wave by Sluice Gate Operations - (영산호 운영을 위한 홍수예보모형의 개발(III) -배수갑문 조절에 의한 홍수파의 전달-)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.13.2-20
    • /
    • 1995
  • An water balance model was formulated to simulate the change in water levels at the estuary reservoir from sluice gate releases and the inflow hydrographs, and an one-di- mensional flood routing model was formulated to simulate temporal and spatial varia- tions of flood hydrographs along the estuarine river. Flow rates through sluice gates were calibrated with data from the estuary dam, and the results were used for a water balance model, which did a good job in predicting the water level fluctuations. The flood routing model which used the results from two hydrologic models and the water balance model simulated hydrographs that were in close agreement with the observed data. The flood forecasting model was found to be applicable to real-time forecasting of water level fluc- tuations with reasonable accuracies.

  • PDF

A Study on the Optimal Design of the Gate Leaf of a Dam (DAM 수문의 최적설계에 관한 사찰)

  • 최상훈;한응교;양인홍
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.64-70
    • /
    • 1991
  • The design theory of roller gate has been systematized laying more emphasis on practical formulas than theoretical ones and the design procedure of the existing gate facilites is reviewed and analyaed on economical viewpoint and safety factor. The design theory of timoshenko, the thechnical standards for hydraulic gate and penstock of Japan, and the design standards for waterworks structures of Germany are applied to the study of optimal design of a gate leaf. In this study, gate leaf which is now being operated for water control at the seadike, estuary dam and reservoir dam are adopted as a mode, and a new design method by the computer is proposed through the variation of design elements within practical ranges. As a result, safety factor and economical design can be made by using T-beams to the horizontal and vertical beam of the gate leaf instead of H-beams used in the existing seadike roller gate at Asan, and total weight of gate leaf is reduced by the present optimization.

  • PDF