DOI QR코드

DOI QR Code

Tracing Source and Concentration of Riverine Organic Carbon Transporting from Tamjin River to Gangjin Bay, Korea

탐진강-강진만의 댐하류 열린하구 시스템에서 유기탄소의 조성 및 기원 변화 연구

  • Park, Hyung-Geun (Division of Basic Research, National Institute of Ecology) ;
  • Kang, Dong-Won (Division of Ecological Survey Research, National Institute of Ecology) ;
  • Shin, Kyung-Hoon (Marine Sciences and Convergence Technology, Hanyang University) ;
  • Ock, Giyoung (Division of Basic Research, National Institute of Ecology)
  • 박형근 (국립생태원 생태기반연구실) ;
  • 강동원 (국립생태원 생태조사연구실) ;
  • 신경훈 (한양대학교 해양융합과학과) ;
  • 옥기영 (국립생태원 생태기반연구실)
  • Received : 2017.11.09
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

The biogeochemical information of riverine organic matter gives a detailed and integrated recording of natural and anthropogenic activity within a watershed. To investigate the changes in quality and quantity of organic carbon transporting from mountain to ocean via river channels, we estimated the concentrations of dissolved (DOC) and particulate organic carbon (POC), and then traced the source origin of POC using stable carbon isotopes ratio before and after summer rainfalls in the Tamjin River and Ganjin Bay, Korea. Along the small watershed, a total of 13 sites including headwaters, dam reservoir, river and estuary were established for the study. We found some interesting findings in the aspect of distribution of DOC/POC concentration changing their origin sources dynamically flowing downstream. In particular, the river channel transport downstream mainly DOC to river mouth, although upper dam reservoir increased POC concentration by phytoplankton production in summer. Whereas, in the river mouth and estuary, POC was dominated not only by local supply from nearby reed saltmarsh, but also by marine phytoplankton production, respectively. The findings can contribute to increasing the understanding of riverine organic carbon transport in upper large dam and lower open estuary system.

본 연구에서는 상류댐과 열린하구를 가진 소유역에서 하천을 통해 기수역에 유출되는 육상기원 유기탄소의 농도와 발생기원의 시공간적인 분포를 파악하였다. 탐진강과 강진만의 연구결과, 탐진강 상류에 건설된 댐저수지와 강진만 해양에서는 여름 강우 이전에는 일차생산에 의해 저수지 기원, 그리고 해양기원 식물플랑크톤이 유기탄소의 성상과 조성에 영향을 미쳤다. 댐하류 하천에서는 상류댐에서 유래한 물질이, 그리고 금강천이 합류되면서 지류의 영향이 나타났다. 탐진강 하구역은 조석간만에 따라 탐진강에서 공급되는 물질과 바다에서 유입되는 물질, 그리고 국지적인 갈대습지의 영향이 복잡하게 작용하여 DOC와 POC의 농도변화에 영향을 주고 있었다. 특히, 탐진강에서는 대부분의 유기탄소가 DOC 형태로 강하구로 유출되는 반면, 강진만에서는 해양으로부터 들어오는 식물플랑크톤의 영향으로 POC 형태의 공급이 우세하게 나타나는 등 유기탄소의 성상별, 발생기원별 전이가 뚜렷하게 발생하였다. 이와 같은 강과 해양으로 연결하는 하천 유기탄소의 시공간적인 변화연구는 유역의 환경변화에 따른 생태계 물질이동 변화를 평가하고 예측하는 데 활용될 수 있을 것이다.

Keywords

References

  1. Allan, J.D. and M.M. Castillo. 2007. Stream ecology: structure and function of running waters. Springer, Dordrecht.
  2. Angradi, T.R. 1993. Stable carbon and nitrogen isotope analysis of seston in a regulated Rocky Mountain river, USA. Regulated Rivers: Research & Management 8: 251-270. https://doi.org/10.1002/rrr.3450080305
  3. Balesdent, J., C. Girardin and A. Mariotti. 1993. Site-related ${\delta}^{13}C$ of tree leaves and soil organic matter in a temperate forest. Ecology 74: 1713-1721. https://doi.org/10.2307/1939930
  4. Bisutti, I., I. Hilke and M. Raessler. 2004. Determination of total organic carbon-an overview of current methods. Trends in Analytical Chemistry 23: 716-726. https://doi.org/10.1016/j.trac.2004.09.003
  5. Dawson, T.E., S. Mambelli, A.H. Plamboeck, P.H. Templer and K.P. Tu. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33: 507-559. https://doi.org/10.1146/annurev.ecolsys.33.020602.095451
  6. De Kluijver, A., P.L. Schoon, J.A. Downing, S. Schouten and J.J. Middelburg. 2014. Stable carbon isotope biogeochemistry of lakes along a trophic gradient. Biogeosciences 11: 6265. https://doi.org/10.5194/bg-11-6265-2014
  7. Derrien, M., M. Kim, G. Ock, S. Hong, J. Cho, K. Shin and J. Hur. 2018. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy. Science of The Total Environment 618: 569-578. https://doi.org/10.1016/j.scitotenv.2017.11.067
  8. Dubinsky, Z. and J. Rotem. 1974. Relations between algal populations and the pH of their media. Oecologia 16: 53-60. https://doi.org/10.1007/BF00345087
  9. Finlay, J.C. 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052-1064.
  10. Gal, J., G. Ock, H. Park and K. Shin. 2016. The effect of summer monsoon on pelagic and littoral food webs in a large regulated reservoir (Lake Paldang, Korea): A stable isotope approach. Journal of Freshwater Ecology 31: 327-340. https://doi.org/10.1080/02705060.2015.1136967
  11. Gal, J., M. Kim, Y. Lee, J. Seo and K. Shin. 2012. Foodweb of Aquatic Ecosystem within the Tamjin River through the Determination of Carbon and Nitrogen Stable Isotope Ratios. Korean Journal of Limnology 45: 242-251.
  12. Gichuki, J., L. Triest and F. Dehairs. 2001. The use of stable carbon isotopes as tracers of ecosystem functioning in contrasting wetland ecosystems of Lake Victoria, Kenya. Hydrobiologia 458: 91-97. https://doi.org/10.1023/A:1013188229590
  13. Gomi, T., R.C. Sidle and J.S. Richardson. 2002. Understanding processes and downstream linkages of headwater systems. BioScience 52: 905-916. https://doi.org/10.1641/0006-3568(2002)052[0905:UPADLO]2.0.CO;2
  14. Hedges, J., R. Keil and R. Benner. 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27: 195-212. https://doi.org/10.1016/S0146-6380(97)00066-1
  15. Hedges, J.I., W.A. Clack, P.D. Quay, J.E. Richey, A.H. Devol and U.D.M. Santos. 1986. Composition and fluxes of organic matter in the Amazon River. Limnology and Oceanography 31: 717-738. https://doi.org/10.4319/lo.1986.31.4.0717
  16. Hiederer, R. and M. Kochy. 2011. Global soil organic carbon estimates and the harmonized world soil database. European Commission Joint Research Centre, EUR25225.
  17. Jansson, M., A.-K. Bergstrom, P. Blomqvist and S. Drakare. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250-3255. https://doi.org/10.1890/0012-9658(2000)081[3250:AOCAPB]2.0.CO;2
  18. Jones, Jr, J.B. and L.A. Smock. 1991. Transport and retention of particulate organic matter in two low-gradient headwater streams. Journal of the North American Benthological Society 10: 115-126. https://doi.org/10.2307/1467572
  19. Kang, C., E. Choy, Y. Kim and H. Park. 2009. ${\delta}^{13}C$ Evidence for the importance of local benthic producers to fish nutrition in the inner bay systems in the southern coast of Korea. The Sea 14: 56-62.
  20. Kendall, C., S.R. Silva and V.J. Kelly. 2001. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes 15: 1301-1346. https://doi.org/10.1002/hyp.216
  21. Kim, B., K. Choi, C. Kim, U.H. Lee and Y.H. Kim. 2000. Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Research 34: 3495-3504. https://doi.org/10.1016/S0043-1354(00)00104-4
  22. Kim, M., J. Hwang, O. Kwon and W. Lee. 2013. Analytical Methodology of Stable Isotopes Ratios: Sample Pretreatment, Analysis and Application. Korean Journal of Ecology and Environment 46: 471-487.
  23. Kurata, K., H. Minami and E. Kikuchi. 2001. Stable isotope analysis of food sources for salt marsh snails. Marine Ecology Progress Series 223: 167-177. https://doi.org/10.3354/meps223167
  24. Lee, C. and D. Kang. 2007. Management System Improvement Strategies for Supporting an Integrated Estuary Environmental Management. Ocean Policy Research 22: 89-122.
  25. Lee, J., J. Kim, J. Owen, Y. Choi, K. Shin, S. Jung and B. Kim. 2013. Variation in carbon and nitrogen stable isotopes in POM and zooplankton in a deep reservoir and relationship to hydrological characteristics. Journal of Freshwater Ecology 28: 47-62. https://doi.org/10.1080/02705060.2012.689999
  26. Lee, Y., S. Hong, M. Kim, D. Lim, B. Choi, J. Hur, J. Khim and K. Shin. 2017. Identification of sources and seasonal variability of organic matter in Lake Sihwa and surrounding inland creeks, South Korea. Chemospere 177: 109-119. https://doi.org/10.1016/j.chemosphere.2017.02.148
  27. Nakano, S., H. Miyasaka and N. Kuhara. 1999. Terrestrialaquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80: 2435-2441.
  28. Ock, G. and Y. Takemon. 2010. Estimation of transport distance of fine particulate organic matter in relation to channel morphology in tailwaters of the Lake Biwa and reservoir dams. Landscape and Ecological Engineering 6: 161-169. https://doi.org/10.1007/s11355-009-0099-y
  29. Ock, G. and Y. Takemon. 2014. Effect of reservoir-derived plankton released from dams on particulate organic matter composition in a tailwater river (Uji River, Japan): source partitioning using stable isotopes of carbon and nitrogen. Ecohydrology 7: 1172-1186.
  30. Oh, N. 2016. The loads and biogeochemical properties of riverine carbon. Korean Journal of Ecology and Environment 49: 245-257. https://doi.org/10.11614/KSL.2016.49.4.245
  31. Park, J., E. Kim, K. Kim, S. Cho, J. Yoo, S. Kim, Y. Park and T. Song. 2009. Characteristics in organic carbon distribution in the Seamangeum area during the construction of artificial sea dike, Korea. Journal of Korean Society for Marine Environment and Energy 12: 75-83.
  32. Park, J., E. Kim, K. Kim, Y. Park and S. Cho. 2006. Organic carbon behavior and distribution in the Mankyoung River Estuary. Journal of Korean Society for Marine Environment and Energy 9: 131-140.
  33. Richardson, J.S. and R.J. Mackay. 1991. Lake outlets and the distribution of filter feeders: an assessment of hypotheses. Oikos 62: 370-380. https://doi.org/10.2307/3545503
  34. Schlesinger, W.H. and J.M. Melack. 1981. Transport of organic carbon in the world's rivers. Tellus 33: 172-187.
  35. Schlunz, B. and R. Schneider. 2000. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates. International Journal of Earth Sciences 88: 599-606. https://doi.org/10.1007/s005310050290
  36. Smittenberg, R., T. Eglinton, S. Schouten and J.S. Damste. 2006. Ongoing buildup of refractory organic carbon in boreal soils during the Holocene. Science 314: 1283-1286. https://doi.org/10.1126/science.1129376
  37. Stumm, W. and J.J. Morgan. 2012. Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley & Sons, New York.
  38. Thorp, J.H. and M.D. Delong. 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305-308. https://doi.org/10.2307/3545642
  39. Vadeboncoeur, Y. 1994. Longitudinal dynamics of seston concentration and composition in a lake outlet stream. Journal of the North American Benthological Society 13: 181-189. https://doi.org/10.2307/1467237
  40. Wetzel, R.G. 2001. Limnlogy: lake and river ecosystem. Gulf Professional Publishing.
  41. Wipfli, M.S., J.S. Richardson and R.J. Naiman. 2007. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates and wood down headwater channels. Journal of the American Water Resources Association 43: 72-85. https://doi.org/10.1111/j.1752-1688.2007.00007.x
  42. Wozniak, A.S., C.T. Roman, S.C. Wainright, R.A. McKinney and M.-J. James-Pirri. 2006. Monitoring food web changes in tide-restored salt marshes: a carbon stable isotope approach. Estuaries and Coasts 29: 568-578. https://doi.org/10.1007/BF02784283
  43. Wu, Y., H. Bao, H. Yu, J. Zhang and G. Kattner. 2015. Temporal variability of particulate organic carbon in the lower Changjiang (Yangtze River) in the post-Three Gorges Dam period: Links to anthropogenic and climate impacts. Journal of Geophysical Research: Biogeosciences 120: 2194-2211. https://doi.org/10.1002/2015JG002927