• 제목/요약/키워드: Estrogen receptor signaling proteins

검색결과 7건 처리시간 0.02초

Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway

  • Gao, Quan-Gui;Zhou, Li-Ping;Lee, Vien Hoi-Yi;Chan, Hoi-Yi;Man, Cornelia Wing-Yin;Wong, Man-Sau
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.527-538
    • /
    • 2019
  • Background: Ginsenoside Rg1 was shown to exert ligand-independent activation of estrogen receptor (ER) via mitogen-activated protein kinase-mediated pathway. Our study aimed to delineate the mechanisms by which Rg1 activates the rapid ER signaling pathways. Methods: ER-positive human breast cancer MCF-7 cells and ER-negative human embryonic kidney HEK293 cells were treated with Rg1 ($10^{-12}M$, $10^{-8}M$), $17{\beta}$-estradiol ($10^{-8}M$), or vehicle. Immunoprecipitation was conducted to investigate the interactions between signaling protein and ER in MCF-7 cells. To determine the roles of these signaling proteins in the actions of Rg1, small interfering RNA or their inhibitors were applied. Results: Rg1 rapidly induced $ER{\alpha}$ translocation to plasma membrane via caveolin-1 and the formation of signaling complex involving linker protein (Shc), insulin-like growth factor-I receptor, modulator of nongenomic activity of ER (MNAR), $ER{\alpha}$, and cellular nonreceptor tyrosine kinase (c-Src) in MCF-7 cells. The induction of extracellular signal-regulated protein kinase and mitogen-activated protein kinase kinase (MEK) phosphorylation in MCF-7 cells by Rg1 was suppressed by cotreatment with small interfering RNA against these signaling proteins. The stimulatory effects of Rg1 on MEK phosphorylation in these cells were suppressed by both PP2 (Src kinase inhibitor) and AG1478 [epidermal growth factor receptor (EGFR) inhibitor]. In addition, Rg1-induced estrogenic activities, EGFR and MEK phosphorylation in MCF-7 cells were abolished by cotreatment with G15 (G protein-coupled estrogen receptor-1 antagonist). The increase in intracellular cyclic AMP accumulation, but not Ca mobilization, in MCF-7 cells by Rg1 could be abolished by G15. Conclusion: Ginsenoside Rg1 exerted estrogenic actions by rapidly inducing the formation of ER containing signalosome in MCF-7 cells. Additionally, Rg1 could activate EGFR and c-Src ER-independently and exert estrogenic effects via rapid activation of membrane-associated ER and G protein-coupled estrogen receptor.

Endocrine - Mimicking Phytoestrogens: Health Effects and Signaling

  • Ahn, Hae Sun;Gye, Myung Chan
    • 환경생물
    • /
    • 제22권4호
    • /
    • pp.479-486
    • /
    • 2004
  • Phytoestrogens display estrogen-like activity because of their structural similarity to human estrogens and exhibit high affinity binding for the estrogen receptors (ERs). The prevalence of phytoestrogens in our diets and the biological effects that they may cause need to be fully examined. ER is the ancestral receptor from which all other steroid receptors have evolved. Although phytoestrogens serve specific signaling functions between the plants and insects, fungi, and bacteria, many chemical signals are often misinterpreted as estrogenic signals in non-target organisms such as vertebrates. There are no ERs in plants or in their most common partners, insects. However, Rhizobium soil bacteria have NodD proteins which is an intended target of phytoestrogen signaling and share genetic homology with the ER. These two evolutionarily distant receptors both recognize and respond to a shared group of chemical signals and ligands, including both agonists and antagonists. This review briefly summarizes estrogen and estrogen receptors, kinds of important phytoestrogens, their health effects as well as some of the evolutionary aspects of mechanism by which phytoestrogen mimics the endogenous ER signaling in our body.

Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling

  • Nguyen, Cuong Thach;Luong, Truc Thanh;Kim, Gyu-Lee;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.69-75
    • /
    • 2015
  • Background: Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-${\beta}$ signaling. Methods: Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to $H_2O_2$. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined byWestern blot analysis. The roles of ER-${\beta}$, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results: Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-${\beta}$, PI3K, and p-Akt expression. Conversely, ER-${\beta}$ inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion: Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-${\beta}$ expression.

Stimulatory Anticancer Effect of Resveratrol Mediated by G Protein-Coupled Estrogen Receptor in Colorectal Cancer

  • Nayun Kim;Junhye Kwon;Ui Sup Shin;Joohee Jung
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.655-660
    • /
    • 2023
  • Colorectal cancer (CRC) is one of the most high-risk cancers; however, it has been suggested that estrogen signaling in CRC could have a protective effect. Therefore, we focused on the function of the G protein-coupled estrogen receptor (GPER) among the estrogen receptors in CRC. In this study, we investigated the therapeutic effect of resveratrol via GPER in CRC (RKO and WiDr) cells, CRC cell-derived xenograft models, and organoids (30T and 33T). Resveratrol significantly suppressed cell viability and proliferation in highly GPER-expressing RKO cells compared to that in low GPER-expressing WiDr cells. In xenograft models, resveratrol also delayed tumor growth and exhibited a high survival rate depending on GPER expression in RKO-derived tumors. Furthermore, resveratrol significantly inhibited the viability of organoids with high GPER expression. Additionally, the anticancer effect of resveratrol on CRC showed that resveratrol rapidly responded to GPER, while increasing the expression of p-ERK and Bax and cleaving PARP proteins.

둥근성게(Strongylocentrotus nudus)의 Smad3와 Estrogen Receptor-related $Receptor\;{\beta}$ like 1 유전자 발현 (Gene Expression of Smad3 and Estrogen Receptor-related $Receptor\;{\beta}$ like 1 in Sea Urchin, Strongylocentrotus nudus)

  • 정유정;손영창
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권1호
    • /
    • pp.43-47
    • /
    • 2007
  • Transforming growth $factor-{\beta}(TGF-{\beta})$ 신호의 매개자 역할을 하는 Smad 계열 단백질은 발생과정에 중요한 역할을 한다고 알려져 있다. Estrogen receptor(ER)와 구조적으로 유사한 estrogen receptor-related receptor(ERR)은 포유동물에서 후기 배발생기에 외배엽 형성과 관련이 되어 있는 고아핵수용체이다. 본 연구에서는 해양무척추동물의 초기발생과정과 계절번식기 동안에 Smad3와 ERR의 유전자 발현이 발생과정과 성숙에 어떠한 연관성을 갖고 있는지 알아보기 위하여, 동해안 연안에 주로 서식하는 극피동물문 둥근성게과 둥근성게(Strongylocentrotus nudus)를 재료로 하여 계절별 및 배발생 과정중에 Smad3와 $ERR{\beta}$ like 1의 mRNA 농도를 real-time PCR 방법으로 조사하였다. Smad3 mRNA는 샘플링을 시작한 2004년 2월의 생식소와 비교하면 4월부터 그 농도가 증가하기 시작하여 6월까지 증가하였으며, 산란기인 8월에 감소하였다가 10월부터 12월까지 높은 수준을 유지하였다. $ERR{\beta}$ like 1 mRNA는 6월까지 낮은 수준이었으나, 산란기인 8월에 급증한 후 다시 감소하였다. 수정란부터 초기 유생기까지 발생과정을 분석한 결과, Smad3 mRNA는 8세포기 및 16세포기에 높은 발현이 관측되었다. 한편, $ERR{\beta}$ like 1 mRNA는 포배기, 낭배기, 초기 유생기에 현저하게 높은 발현패턴을 보였다. 이상의 결과로부터 둥근성게의 산란기 및 발생배의 발생후기에 $ERR{\beta}$ like 1이 중요한 역할을 담당할 것으로 추정되며, 초기 난할시기에는 Smad3의 관련성이 시사되었다.

  • PDF

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

골 대사 및 phytochemicals의 estrogen 효과 (Bone Metabolism and Estrogenic Effect of Phytochemicals)

  • 김보경;김미향
    • 생명과학회지
    • /
    • 제28권7호
    • /
    • pp.874-883
    • /
    • 2018
  • 전 세계적인 인구 고령화 현상으로 인하여 골다공증은 주요한 질병으로 대두되고 있다. 골다공증은 뼈의 질량과 강도가 감소하여 골절의 위험이 증가하는 질환으로 조골세포의 골 형성 및 파골세포의 골 흡수의 불균형으로 인해 발생하는 질환이다. 조골세포에 의한 골 형성은 BMP, RUNX2, $Wnt/{\beta}-catenin$ 경로 등을 통하여 활성화 되며, 파골세포에 의한 골 흡수는 RANKL과 RANK의 결합에 의해서 시작된다. 폐경기 여성은 호르몬 불균형에 의해 여러 질병의 위험에 처해 있으며, 폐경기 여성의 약 30%에서 관찰되는 골다공증은 폐경기 여성에게서 발생되는 가장 흔한 대사성 질환이기도 하다. Estrogen이 부족할 때 파골세포의 골 흡수가 촉진되므로, 특히 폐경 여성에서 골다공증의 발생위험이 증가하게 된다. 호르몬대체요법은 폐경기 증후군의 증상을 경감시키거나 치료하기 위해 널리 사용되어 왔으나, 호르몬 치료를 장기간 실시할 경우 유방암, 난소암, 자궁암 등의 부작용 위험성이 매우 높은 것으로 알려져 있다. 따라서 최근 들어 여러 부작용을 보완하기 위해 폐경기 증후군 증상에 대처할 수 있는 estrogen과 유사한 활성을 지닌 식물성 estrogen인 phytoestrogen에 대한 연구가 활발히 진행되고 있다. 따라서, 본 총설에서는 조골세포 및 파골세포의 분화 기전에 대한 선행연구를 알아보고 골 대사에서의 estrogen의 역할 및 phytoestrogen과 관련한 연구들에 대해서도 살펴보았다.