• 제목/요약/키워드: Estrogen receptor β

검색결과 30건 처리시간 0.024초

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권2호
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

Anti-Menopausal Effect of Heat-Killed Bifidobacterium breve HDB7040 via Estrogen Receptor-Selective Modulation in MCF-7 Cells and Ovariectomized Rats

  • Hyeon Jeong Kim;Kyung Min Kim;Min-Kyu Yun;Duseong Kim;Johann Sohn;Ji-Won Song;Seunghun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권8호
    • /
    • pp.1580-1591
    • /
    • 2024
  • Menopause is induced by spontaneous ovarian failure and leads to life quality deterioration with various irritating symptoms. Hormonal treatment can alleviate these symptoms, but long-term treatment is closely associated with breast and uterine cancer, and stroke. Therefore, developing alternative therapies with novel anti-menopausal substances and improved safety is needed. In our study, heat-killed Bifidobacterium breve HDB7040 significantly promoted MCF-7 cell proliferation in a dose-dependent manner under estrogen-free conditions, similar to 17β-estradiol. This strain also triggered ESR2 expression, but not ESR1, in MCF-7 cells. Moreover, administrating HDB7040 to ovariectomized (OVX) Sprague-Dawley (SD) female rats reduced estrogen deficiency-induced weight gain, fat mass, blood triglyceride, and total cholesterol levels. It also recovered collapsed trabecular microstructure by improving trabecular morphometric parameters (bone mineral density, bone volume per tissue volume, trabecular number, and trabecular separation) and decreasing blood alkaline phosphatase levels with no significant changes in uterine size and blood estradiol. HDB7040 also significantly regulated the expression of Tff1, Pgr, and Esr2, but not Esr1 in uteri of OVX rats. Heat-killed B. breve HDB7040 exerts an anti-menopausal effect via the specific regulation of ERβ in vitro and in vivo, suggesting its potential as a novel substance for improving and treating menopausal syndrome.

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • 제27권4호
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

Mitogenic Estrogen Metabolites Alter the Expression of β-estradiol-regulated Proteins Including Heat Shock Proteins in Human MCF-7 Breast Cancer Cells

  • Kim, Seong Hwan;Lee, Su-Ui;Kim, Myung Hee;Kim, Bum Tae;Min, Yong Ki
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.378-384
    • /
    • 2005
  • Estrogen metabolites are carcinogenic. The comparative mitogenic activities of $17{\beta}$-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1) and 2-methoxyestradiol (2-ME), were determined in estrogen receptor(ER)-positive MCF-7 human breast cancer cells. Each of the E2 metabolites caused proliferation of the MCF-7 cells, but only E2 and $16{\alpha}$-OHE1 induced a greater than 20-fold increases in transcripts of the progesterone receptor (PR) gene, a classical ER-mediated gene. This suggests that the mitogenic action of E2 and $16{\alpha}$-OHE1 could result from their effects on gene expression via the ER. E2 metabolites altered the expression of E2-regulated proteins including heat shock proteins (Hsps). $16{\alpha}$-OHE1 and 2-ME as well as E2 increased levels of Hsp56, Hsp60, $Hsp90{\alpha}$ and Hsp110 transcripts, and the patterns of these inductions resembled that of PR. Hsp56 and Hsp60 protein levels were increased by all the E2 metabolites. Levels of the transcripts of 3 E2-upregulated proteins (XTP3-transactivated protein A, protein disulfide isomerase-associated 4 protein and stathmin 1) and an E2-downregulated protein (aminoacylase 1) were also affected by the E2 metabolites. These results suggest that the altered expression of Hsps (especially Hsp56 and Hsp60) by E2 metabolites such as E2, $16{\alpha}$-OHE1 and 2-ME could be closely linked to their mitogenic action.

Estrogen receptor β promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals

  • Ou, Zhenyu;Wang, Yongjie;Chen, Jinbo;Tao, Le;Zuo, Li;Sahasrabudhe, Deepak;Joseph, Jean;Wang, Long;Yeh, Shuyuan
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.10.1-10.11
    • /
    • 2018
  • Although early studies suggested that bladder cancer (BCa) is more prevalent in men than in women, muscle-invasive rates are higher in women than in men, suggesting that sex hormones might play important roles in different stages of BCa progression. In this work, we found that estrogen receptor beta ($ER{\beta}$) could increase BCa cell proliferation and invasion via alteration of miR-92a-mediated DAB2IP (DOC-2/DAB2 interacting protein) signals and that blocking miR-92a expression with an inhibitor could partially reverse $ER{\beta}$-enhanced BCa cell growth and invasion. Further mechanism dissection found that $ER{\beta}$ could increase miR-92a expression at the transcriptional level via binding to the estrogen-response-element (ERE) on the 5' promoter region of its host gene C13orf25. The $ER{\beta}$ up-regulated miR-92a could decrease DAB2IP tumor suppressor expression via binding to the miR-92a binding site located on the DAB2IP 3' UTR. Preclinical studies using an in vivo mouse model also confirmed that targeting this newly identified $ER{\beta}$/miR-92a/DAB2IP signal pathway with small molecules could suppress BCa progression. Together, these results might aid in the development of new therapies via targeting of this $ER{\beta}$-mediated signal pathway to better suppress BCa progression.

Anew formula CPC22 regulates bone loss, hot flashes, and dysregulated lipid metabolism in ovariectomized postmenopausal mice

  • Hee-Yun Kim;Hyunwoo Jee;Hosong Cho;Dongjun Park;Hyun-Ja Jeong
    • 셀메드
    • /
    • 제13권14호
    • /
    • pp.15.1-15.15
    • /
    • 2023
  • Background and objective: A new formular CPC22 consists of Cynanchum wilfordii root, Pueraria thomsonii flower, and Citrus unshiu peel and has been developed to improve the postmenopausal symptoms. The research intended to evaluate whether CPC22 would regulate bone loss, hot flashes, and dysregulated lipid metabolism in ovariectomized (OVX) postmenopausal mice. Method: The OVX mice were orally administered with CPC22 daily for 7 weeks. Results: CPC22 regulated OVX-induced bon loss by enhancing serum osteoprotegerin, alkaline phosphatase, and osteocalcin levels and diminishing serum receptor-activator of the NF-κB ligand (RANKL), collagen type 1 cross-linked N-telopeptide, and tartrate-resistant acid phosphatase levels. As a result of CPC22 treatment, notable decreases in tail skin temperature and rectal temperature were observed, along with diminishment in hypothalamic RANKL and monoamine oxidase A levels and enhancement in hypothalamic serotonin (5-HT), norepinephrine, dopamine, 5-HT2A, and estrogen receptor-β levels. CPC22 enhanced levels of serum estrogen and diminished levels of serum follicle-stimulating hormone and luteinizing hormone. CPC22 regulated levels of serum lipid metabolites, including total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Furthermore, CPC22 diminished levels of serum blood urea nitrogen, creatine kinase, alanine transaminase, aspartate aminotransferase, and lactate dehydrogenase and restored vaginal dryness without affecting uterus atrophy index and vagina weights. Conclusion: Therefore, these results indicated that CPC22 improves OVX-induced bone loss, hot flashes, and dysregulated lipid metabolism by compensating for estrogen deficiency without side effects, suggesting that CPC22 may be used for the prevention and treatment of post menopause.

Sulfasalazine attenuates tamoxifen-induced toxicity in human retinal pigment epithelial cells

  • Hwang, Narae;Chung, Su Wol
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.284-289
    • /
    • 2020
  • Tamoxifen, a nonsteroidal estrogen receptor (ER) antagonist, is used routinely as a chemotherapeutic agent for ER-positive breast cancer. However, it is also causes side effects, including retinotoxicity. The retinal pigment epithelium (RPE) has been recognized as the primary target of tamoxifen-induced retinotoxicity. The RPE plays an essential physiological role in the normal functioning of the retina. Nonetheless, potential therapeutic agents to prevent tamoxifen-induced retinotoxicity in breast cancer patients have not been investigated. Here, we evaluated the action mechanisms of sulfasalazine against tamoxifen-induced RPE cell death. Tamoxifen induced reactive oxygen species (ROS)-mediated autophagic cell death and caspase-1-mediated pyroptosis in RPE cells. However, sulfasalazine reduced tamoxifen-induced total ROS and ROS-mediated autophagic RPE cell death. Also, mRNA levels of tamoxifen-induced pyroptosis-related genes, IL-1β, NLRP3, and procaspase-1, also decreased in the presence of sulfasalazine in RPE cells. Additionally, the mRNA levels of tamoxifen-induced AMD-related genes, such as complement factor I (CFI), complement factor H (CFH), apolipoprotein E (APOE), apolipoprotein J (APOJ), toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4), were downregulated in RPE cells. Together, these data provide novel insight into the therapeutic effects of sulfasalazine against tamoxifen-induced RPE cell death.

17β-estradiol이 progesterone target cell 분포에 미치는 영향에 대한 면역조직화학적 연구 II. 면역조직화학적 방법에 의한 증식세포수의 영향에 대하여 (Immunohistochemical study on distribution of progesterone target cells by 17β-estradiol II. Effect on the number of proliferating cells by immunohistochemical methods)

  • 곽수동
    • 대한수의학회지
    • /
    • 제36권1호
    • /
    • pp.101-108
    • /
    • 1996
  • This study was desinged to investigate the effect of estrogen(Est) on the proliferating of progesterone(Prog) target cells. The spayed 13 rats(Wistar, approximately 300gm) were randomly alloted into 3 groups. One group was the control group and another Prog-treated group was injected with 1mg of Prog/rat/day for 2 consecutive days, and Estand Prog-treated group was injected intramuscularly with $17{\beta}$-estradiol $20{\mu}g/rat/day$ for 3 consecutive days and then with Prog for 2 days as above from 4th day. Rats were administrated intraperitoneally with bromodeoxyuridinc(Brdur,0.2mg/BW once) befero 2 hours of exanguination. In gross finding, the groups with more level of dimension and weight on the uterus were ordered as Est- and Prog-treated group, Prog-treated group and control group. The investigation by immunohistochemical methods using paraffin sections of the uteri was performed by using anti-Brdur antibody for labeling proliferating cells of Prog target cells. The groups with higher labeling index(LI) were ordered as Prog-treated grop, Est- and Prog- treated group and control group. The number of proliferating cells from Prog target cells in the rats were rather deceased by Prog injection following Est injection than prog injection only. The cell types with higher LI in the wall layers of all 3 groups were ordered as endometrial stromal cells, glandular epithelial cells, luminal epithelial cells, myometrial muscle cells and serosa methodelial cells, and the region with highest LI was functional zone of the endometrium and the region with lower LI was muscular layer and then those with lowest LI was serosa and also the considerable different LI from individual rat were observed.

  • PDF

SH003과 분획물의 구성 성분인 이소플라본의 유방암에 대한 효과 (The effect of isoflavonoid contents in SH003 and its subfractions on breast cancer)

  • 최유정;최원근;이강욱;정미소;박상철;장영표;고성규
    • 대한한의학회지
    • /
    • 제43권3호
    • /
    • pp.79-93
    • /
    • 2022
  • Objectives: We investigated the isoflavone contained in SH003 and its fractions, and the effect of these components on the inhibition of breast cancer. Methods: The isoflavones in solvent fractions of SH003 extract were identified by UPLC-MS and its contents were quantified using HPLC analysis. The estrogenic activity of SH003 or fractions was assessed by ERE luciferase assay in estrogen receptor (ER)-positive MCF-7 cells. To test the breast cancer inhibitory effect, the cell viability was measured using an MTT assay. Results: In this study, we demonstrated that SH003 and fractions contain 4 isoflavones which are calycosin-7-β-D-glucoside, formononetin-7-β-D-glucoside, calycosin, and formononetin. Despite containing isoflavones, estrogen-dependent transcription activity was not altered by both SH003 and fractions. On the other hand, SH003 and fractions inhibited the cell viability of breast cancer. In addition, its isoflavone components also showed reduced cell viability in various breast cancer cells. Conclusions: Overall, the phytoestrogen included in SH003 and fractions did not influence the estrogenic activity, emphasizing the safety of SH003 and fractions in breast cancer treatment.

Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development

  • Yoo, Hee Min;Park, Jong Ho;Kim, Jae Yeon;Chung, Chin Ha
    • Molecules and Cells
    • /
    • 제45권6호
    • /
    • pp.425-434
    • /
    • 2022
  • The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.