• 제목/요약/키워드: Estrogen receptor β

검색결과 30건 처리시간 0.024초

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells

  • Chu, Chun;Gao, Xiang;Li, Xiang;Zhang, Xiaoying;Ma, Ruixin;Jia, Ying;Li, Dahong;Wang, Dongkai;Xu, Fanxing
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.163-171
    • /
    • 2020
  • Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.

Transcriptional Activity of an Estrogen Receptor β Subtype in the Medaka Oryzias dancena

  • Maeng, Sejung;Yoon, Sung Woo;Kim, Eun Jeong;Nam, Yoon Kwon;Sohn, Young Chang
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권4호
    • /
    • pp.333-344
    • /
    • 2019
  • In vertebrate reproductive system, estrogen receptor (ER) plays a pivotal role in mediation of estrogenic signaling pathways. In the present study, we report the cDNA cloning, expression analysis, and transcriptional activity of ERβ1 subtype from medaka Oryzias dancena. The deduced O. dancena ERβ1 (odERβ1; 519 amino acids) contained six characteristic A/B to E/F domains with very short activation function 2 region (called AF2). A phylogenetic analysis indicated that odERβ1 was highly conserved among teleost ERβ1 subgroup. A conventional RT-PCR revealed that the odERβ1 transcripts were widely distributed in the multiple tissues, the ovary, brain, gill, intestine, kidney, and muscle. Further, the relatively higher odERβ1 expressions in the ovary and brain were clearly reproduced in RT-qPCR assay. When HA-fused odERβ1 expression vector was transfected into HEK293 cells, an immunoreactivity for odERβ1 was mainly detected in the nucleus part. Finally, an estrogen responsive element driven luciferase reporter assays demonstrated that the transcriptional activity of odERβ1 significantly increased by estradiol-17β (E2) in a dose dependent manner (p<0.05). However, fold-activation of odERβ1 in the presence of E2 was markedly weak, when it compared with those of O. latipes ERβ1. Taken together, these data suggest that odERβ1 represents a functional variant of teleost ERβ subtype and provides a basic tool allowing future studies examining the function of F domain of ERβ1 subtype and expanding our knowledge of ERβ evolution.

Synthesis and Evaluation of Estrogen Receptor β -Selective Ligands: Fluoroalkylated Indazole Estrogens

  • Moon, Byung-Seok;Katzenellenbogen, John A.;Cheon, Gi-Jeong;Chi, Dae-Yoon;Lee, Kyo-Chul;An, Gwang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1107-1114
    • /
    • 2008
  • It is important to identify selective ligands for the estrogen receptor subtypes ER$\alpha$ or ER$\beta$ to evaluate them as pharmaceutical targets in breast cancer. To develop ER$\beta$-selective ligands as PET imaging agents, a series of aryl indazole estrogen analogues substituted at the C3 position with fluoroethyl and fluoropropyl groups were synthesized and evaluated for their relative binding affinities and selectivities for ER$\alpha$ vs ER$\beta$. The fluoroethylated indazole estrogen (FEIE, 1i) and fluoropropylated indazole estrogen (FPIE, 1h) showed 41- fold and 17-fold ER$\beta$/ER$\alpha$ selectivity, respectively. However, their binding affinities to ER$\alpha$ and ER$\beta$ were very low.

The brand-new compound CPS219 exhibits anti-oxidant and estrogen-like actions

  • Kyung-Min, Jeong;Yu-Jin, Choi;Seung-Hwan, Kim;Hyun-Ja, Jeong
    • 셀메드
    • /
    • 제13권2호
    • /
    • pp.2.1-2.9
    • /
    • 2023
  • CPS219, a new concept compound composed of coffee (CO), Pueraria Tomsonii flower (PF), and Sambou bamboo saltTM (BS), was developed as a coffee beverage to alleviate menopausal symptoms. The purpose of this study is to evaluate the anti-oxidant and menopausal alleviating effects of CPS219 combined as the optimal ratio of each component selected through sensory evaluation and blind consumer test. For CPS219, the optimal ratio of CO, PF, and BS was determined to be 1:0.1:0.017 through various sensory evaluations and blind consumer tests. CPS219 significantly enhanced the superoxide dismutase-like activity compared to the CO or CO plus PF (CP). The proliferation of MCF-7 cells was considerably increased after 24 hours by treatment with CO, CP, or CPS219, but only CPS219 significantly boosted the proliferation of MCF-7 cells after 48 hours. Moreover, CPS219 had an estrogen-like effect by dramatically increasing the expression of estrogen receptor-β mRNA in MCF-7 cells but not CO and CP. Treatment of MCF-7 cells with CO, CP, or CPS219 did not cause any cytotoxicity. In conclusion, these findings imply that anti-oxidant and estrogen-like properties of CPS219 can be used to prevent and cure postmenopausal symptoms.

Estrogen receptor β stimulates Egr-1 transcription via MEK1/Erk/Elk-1 cascade in C6 glioma cells

  • Kim, Ji-Ha;Jeong, Il-Yeup;Lim, Yoong-Ho;Lee, Young-Han;Shin, Soon-Young
    • BMB Reports
    • /
    • 제44권7호
    • /
    • pp.452-457
    • /
    • 2011
  • The Egr-1 is an immediate early response gene encoding a transcription factor that functions in the regulation of cell growth, differentiation, and apoptosis. Estrogen has diverse physiological effects, including cellular proliferation and neuroprotection against brain injury. There are two types of estrogen receptors (ERs), $ER{\alpha}$ and $ER{\beta}$. $ER{\alpha}$-induced Egr-1 expression has been extensively studied; however, the role of $ER{\beta}$ is yet not known. In the present study, we investigated whether or not $ER{\beta}$ induces Egr-1 expression in C6 rat glioma cells, which express $ER{\beta}$ but not $ER{\alpha}$. Our results show that $ER{\beta}$ promoted up-regulation of Egr-1 expression via a non-genomic mechanism involving the Raf/MEK1/Erk/Elk-1 signaling cascade.

자궁내막 염증에 대한 지엽적 에스트로겐 및 프로게스테론 매개 수용체의 역할 (Roles of Local Estrogen and Progesterone Mediated Receptors in the Regulation of Endometrial Inflammation)

  • 민계식
    • 생명과학회지
    • /
    • 제33권1호
    • /
    • pp.102-113
    • /
    • 2023
  • 본 총설에서는 지난 수년 동안 자궁내막 염증 관련 새롭게 밝혀진 에스트로겐과 프로게스테론 수용체의 기능 중 지엽적 에스트로겐의 합성, 특이적 에스트로겐 수용체의 조절, 프로게스테론 저항성 그리고 스테로이드 호르몬의 작용에 의한 자궁내막 조직세포의 염증반응, 분화 및 생존에 대한 세포 및 분자적 조절기전들을 고찰한다. 자궁내막 조직 기질세포의 비정상적인 후성유전체적 변화는 자궁내막증의 발병과 진행에 중요한 요인으로 작용한다. 특히, 에스트로겐 수용체 유전자들의 차별적 메틸화는 기질세포내 ERα로부터 ERβ로의 발현 우세도 전환을 유도하여, ERβ-매개 염증반응, 프로게스테론 저항성 및 레티노이드 합성장애 등의 비정상적인 에스트로겐 반응을 초래한다. 이 기질세포는 또한 PGE2 및 SF-1 매개에 의한 스테로이드 합성효소의 발현유도를 통하여 지엽적 에스트로겐의 생성을 촉진하며, 증가된 에스트라디올은 다시 ERβ에 피드백으로 작용하여 COX-2 촉진을 통한 염증반응의 악순환을 야기한다. 높은 ERβ의 발현은 중간엽 줄기세포의 염색질 구조변화릉 야기하여 프로게스테론 저항성을 획득하고, 이는 반복적 생리에 따른 지속적 노출로 자궁내막 조직의 염증을 형성하며, 이후에는 ERβ-매개 에스트로겐과 TNF-α 및 TGF-β1을 포함한 염증 유발 인자들이 작용하여 염증 조직세포의 부착, 혈관생성 및 생존과 기질세포의 분화조절장애를 유도한다. 따라서, 생리주기의 역동적인 호르몬 변화와 이에 따르는 자궁내막 조직의 핵수용체 신호전달 조절기전에 대한 구체적인 이해는 정상적인 생식기능을 유지하면서 자궁내막증과 같은 비정상적 염증질환을 치료하기 위한 새로운 안목을 제공할 수 있을 것으로 기대된다.

Safety effect of fermented oyster extract on the endocrine disruptor assay in vitro and in vivo

  • Lee, Hyesook;Hwangbo, Hyun;Ji, Seon Yeong;Oh, Seyeon;Byun, Kyung-A;Park, Joung-Hyun;Lee, Bae-Jin;Kim, Gi-Young;Choi, Yung Hyun
    • Fisheries and Aquatic Sciences
    • /
    • 제24권10호
    • /
    • pp.330-339
    • /
    • 2021
  • Oyster (Crassostrea gigas) is a marine bivalve mollusk widely distributed in coastal areas, and have been long widely used in industrial resources. Several studies demonstrated that fermented oyster (FO) extract attribute to bone health, but whether administration of FO play as an endocrine disruptor has not been studied. Therefore, in the present study, we investigated the effect of FO on the endocrine system in vitro and in vivo. As the results of the competitive estrogen receptor (ER) and androgen receptor (AR) binding affinities, FO was not combined with ER-α, ER-β, and AR. However, 17β-estradiol and testosterone, used as positive control, were interacted with ER and AR, respectively. Meanwhile, oral administration of 100 mg/kg and 200 mg/kg of FO doesn't have any harmful effect on the body weight, androgen-dependent sex accessory organs, estrogen-dependent-sex accessory organs, kidney, and liver in immature rats. In addition, FO supplementation has no effect on the serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone, and 17β-estradiol. However, the relative weight of androgen- and estrogen-dependent organs were significantly increased by subcutaneously injection of 4.0 mg/kg of testosterone propionate (TP) and by orally administration of 1.0 ㎍ of 17α-ethynyl estradiol (EE) in immature male and female rats, respectively. Furthermore, TP and EE administration markedly decreased the serum LH and FSH levels, which are similar those of mature Sprague-Dawley (SD) rat. Furthermore, the testosterone and 17β-estradiol levels were significantly enhanced in TP and EE-treated immature rats. Taken together, our findings showed that FO does not interact with ER and AR, suggesting consequentially FO does not play as a ligand for ER and AR. Furthermore, oral administration of FO did not act as an endocrine disruptor including androgenic activity, estrogenic activity, and abnormal levels of sex hormone, indicating FO may ensure the safety on endocrine system to develop dietary supplement for bone health.

Optimization of adipogenic differentiation conditions for canine adipose-derived stem cells

  • Kim, Jong-Yeon;Park, Eun-Jung;Kim, Sung-Min;Lee, Hae-Jeung
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.53.1-53.13
    • /
    • 2021
  • Background: Canine adipose-derived stem cells (cADSCs) exhibit various differentiation properties and are isolated from the canine subcutaneous fat. Although cADSCs are valuable as tools for research on adipogenic differentiation, studies focusing on adipogenic differentiation methods and the underlying mechanisms are still lacking. Objectives: In this study, we aimed to establish an optimal method for adipogenic differentiation conditions of cADSCs and evaluate the role of peroxisome proliferator-activated receptor gamma (PPARγ) and estrogen receptor (ER) signaling in the adipogenic differentiation. Methods: To induce adipogenic differentiation of cADSCs, 3 different adipogenic medium conditions, MDI, DRI, and MDRI, using 3-isobutyl-1-methylxanthine (M), dexamethasone (D), insulin (I), and rosiglitazone (R) were tested. Results: MDRI, addition of PPARγ agonist rosiglitazone to MDI, was the most significantly facilitated cADSC into adipocyte. GW9662, an antagonist of PPARγ, significantly reduced adipogenic differentiation induced by rosiglitazone. Adipogenic differentiation was also stimulated when 17β-estradiol was added to MDI and DRI, and this stimulation was inhibited by the ER antagonist ICI182,780. Conclusions: Taken together, our results suggest that PPARγ and ER signaling are related to the adipogenic differentiation of cADSCs. This study could provide basic information for future research on obesity or anti-obesity mechanisms in dogs.

Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation

  • Iqbal, Hamid;Kim, Si-Kwan;Cha, Kyu-Min;Jeong, Min-Sik;Ghosh, Prachetash;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.593-602
    • /
    • 2020
  • Background: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. Methods: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. Results: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. Conclusion: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.