• 제목/요약/키워드: Estimation-Accuracy

검색결과 3,135건 처리시간 0.029초

Parameter Impact Applied Case-based Reasoning Cost Estimation

  • Joseph Ahn;Hyun-Soo Lee;Moonseo Park;Sae-Hyun Ji;Sooyoung Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.475-478
    • /
    • 2013
  • To carry out a one-off construction project successfully, effective and accurate early cost estimation is crucial, especially during the conceptual stage where very limited minimum information of construction project is given. As the level of accuracy of the early cost estimation has huge impacts on precise budgeting and cost management of a project, in other words, reducing the risk of a project, cost must be managed with special awareness. In an effort to improve the estimate accuracy of cost during the conceptual stage, this research introduces a Parameter Impact (PI) which can quantify weights of parameters and rank them; and PI development derived from the principle of impulse in physics is explicated. For a case study, 76 public apartment building cases in Korea are analyzed. To examine the validity of the proposed PI, a validation in terms of CBR applicability test and estimate accuracy comparisons using 10-nearest neighbor cases are carried out. The validation results support that the suggested PI can be applied in quantifying the weights of the parameters and CBR method for early cost estimation.

  • PDF

산란점 수 추정방법에 따른 표적의 길이 추정 (Target Length Estimation of Target by Scattering Center Number Estimation Methods)

  • 이재인;유종원;김남문;정광용;서동욱
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.543-551
    • /
    • 2020
  • 본 논문에서는 레이더를 이용한 표적 길이 추정 정확도를 향상시키기 위한 방법에 관해 소개한다. 레이더 수신신호를 통해 만들어지는 고해상도 거리측면도(HRRP: High Resolution Range Profile)은 표적의 1차원적인 산란 특성을 나타내며, HRRP에서의 피크(peak)는 전자기파를 강하게 산란시키는 산란점(scattering center)을 의미한다. 추출된 산란점을 이용하여 레이더 가시선 방향(RLOS: Radar Line of Sight)의 길이인 표적 종방향 거리(downrange) 길이를 추정하며, 표적과 레이더 가시선 방향이 이루는 각도를 통해 표적의 실제 길이를 추정한다. 길이 추정의 정확도를 향상시키기 위해, HRRP를 이용하는 방법보다 정확하게 산란점을 추출하기 위한 방법인 매개변수 추정방법(parametric estimation method)을 이용할 수 있다. 매개변수 추정방법은 산란점 개수가 결정된 후에 적용되며, 따라서 산란점 개수 추정의 정확도에 크게 영향을 받는다. 본 논문에서는 레이더를 통한 표적 길이 추정 정확도를 향상시키기 위해, 정보 이론적 판단 기준에 바탕을 둔 신호원 수 추정방법인 AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), GLE (Gerschgorin Likelihood Estimators)방법들을 이용하여 산란점 개수를 추정하였다. 매개변수 추정방법으로 ESPRIT기법을 이용하여, 간단한 표적 캐드 모델에 대한 길이 추정 시뮬레이션을 수행하였으며, GLE방법이 산란점 개수 추정과 표적 길이 추정에 우수한 성능을 보임을 확인하였다.

IEEE 802.15.3a 기반의 무선 위치인식을 위한 평균가중 신호 도착방향 매개변수 추정 기법 (An Average-Weighted Angle of Arrival Parameter Estimation Technique for Wireless Positioning based on IEEE 802.15.3a)

  • 방성근;이용업
    • 한국통신학회논문지
    • /
    • 제35권5C호
    • /
    • pp.472-478
    • /
    • 2010
  • UWB 표준인 IEEE 802.15.3a 채널의 무선 통신 시스템 환경에서 채널에 적합하고 추정 정확도가 우수한 신호 도착 방향(AOA) 매개변수 추정 기반의 실내 무선 위치인식 알고리즘을 위한 평균가중 AOA 추정기법을 제안한다. AOA 매개 변수 추정을 위한 IEEE 802.15.3a 기반의 초광대역 신호 모형을 설정하고, 종래 추정 기법보다 추정 정확도가 우수한 평균가중 기반의 다중신호 분류 기법들을 제안한다. 컴퓨터 모의실험을 통해, IEEE 802.15.3a 채널이 포함한 실내 무선 위치인식 시스템 환경을 구축하고, 제안한 AOA 추정 방식을 통해 종래 방식 보다 우수한 추정 결과를 보인다.

AdaMM-DepthNet: Unsupervised Adaptive Depth Estimation Guided by Min and Max Depth Priors for Monocular Images

  • ;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.252-255
    • /
    • 2020
  • Unsupervised deep learning methods have shown impressive results for the challenging monocular depth estimation task, a field of study that has gained attention in recent years. A common approach for this task is to train a deep convolutional neural network (DCNN) via an image synthesis sub-task, where additional views are utilized during training to minimize a photometric reconstruction error. Previous unsupervised depth estimation networks are trained within a fixed depth estimation range, irrespective of its possible range for a given image, leading to suboptimal estimates. To overcome this suboptimal limitation, we first propose an unsupervised adaptive depth estimation method guided by minimum and maximum (min-max) depth priors for a given input image. The incorporation of min-max depth priors can drastically reduce the depth estimation complexity and produce depth estimates with higher accuracy. Moreover, we propose a novel network architecture for adaptive depth estimation, called the AdaMM-DepthNet, which adopts the min-max depth estimation in its front side. Intensive experimental results demonstrate that the adaptive depth estimation can significantly boost up the accuracy with a fewer number of parameters over the conventional approaches with a fixed minimum and maximum depth range.

  • PDF

풍력발전사업 에너지생산량 산정 오차가 사업성지표에 미치는 영향 및 AHP를 이용한 중요인자 분석 (Influences of Energy Production Estimation Errors on Project Feasibility Indicators of a Wind Project and Critical Factor Analysis by AHP)

  • 김영경;장병만
    • 경영과학
    • /
    • 제30권2호
    • /
    • pp.1-10
    • /
    • 2013
  • Case studies are made to investigate the relationship between the accuracy of energy production estimation and project feasibility indicators such as rate of return on equity (ROE) and debt service coverage ratio (DSCR) for three wind farm projects. It is found out that 1% improvement in the accuracy of energy production estimation may enhance the ROE by more than 0.5% in the case of P95, thanks to improved financing terms. AHP survey shows that MCP correlation of measured in situ wind data with long term wind speed distribution and hands-on experiences of flow analysis are more important than other factors for more precise annual energy production estimation.

주행조건 식별을 이용한 로봇청소기의 진행각 추정을 위한 향상된 필터설계 (Improved Yaw-angle Estimation Filter as a Function of the Actual Maneuvers for a Cleaning Robot)

  • 조윤희;이상철;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.470-476
    • /
    • 2016
  • This paper proposes a practical algorithm for the reduction of measurement errors due to drift in a micro-electromechanical system (MEMS) gyros that are used for a mobile robot. Any drift in a MEMS gyro will cause an unbounded growth of errors in the estimation of heading, which makes it nearly useless in applications that require high accuracy over a long operating time. In proposed method, maneuvers of a cleaning robot are observed through encoders' measurement process and a decision to correct bias drift will be made if necessary. The method used in this paper is called the "heading estimation filter". To evaluate the accuracy of the proposed method, a comparison was made between the estimation of the heading of the cleaning robot and one from a motion capture system.

소형어선(小型漁船)의 유효마력추정(有效馬力推定) 및 선형설계법(船型設計法) (A Study on the EHP Estimation and Design Procedure of Small Fishing Boat's Hull Form)

  • 이영길
    • 대한조선학회지
    • /
    • 제21권3호
    • /
    • pp.1-10
    • /
    • 1984
  • The computer programs of effective horsepower estimation of small fishing boat were developed, which was based on the statistical analysis of model test results. From the EHP estimation by these program and experimental model tests of practical fishing boats, the estimation accuracy was verified with maximum deviation of about 10 percent. Also, the EHP estimation accuracy was practically applied to initial design of four small fishing boats, and after the tank tests, the EHP reduction of the order of 15 to 25 percent was confirmed, as compared with existing ships. Moreover, a computer aided design procedure of fishing boat's hull form has been proposed in this study. The practical use of this procedure of fishing boat's hull form has been proposed in this study. The practical use of this procedure was demonstrated with the hull form design results of several fishing boats.

  • PDF

Improved Attenuation Estimation of Ultrasonic Signals Using Frequency Compounding Method

  • Kim, Hyungsuk;Shim, Jaeyoon;Heo, Seo Weon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.430-437
    • /
    • 2018
  • Ultrasonic attenuation is an important parameter in Quantitative Ultrasound and many algorithms have been proposed to improve estimation accuracy and repeatability for multiple independent estimates. In this work, we propose an improved algorithm for estimating ultrasonic attenuation utilizing the optimal frequency compounding technique based on stochastic noise model. We formulate mathematical compounding equations in the AWGN channel model and solve optimization problems to maximize the signal-to-noise ratio for multiple frequency components. Individual estimates are calculated by the reference phantom method which provides very stable results in uniformly attenuating regions. We also propose the guideline to select frequency ranges of reflected RF signals. Simulation results using numerical phantoms show that the proposed optimal frequency compounding method provides improved accuracy while minimizing estimation bias. The estimation variance is reduced by only 16% for the un-compounding case, whereas it is reduced by 68% for the uniformly compounding case. The frequency range corresponding to the half-power for reflected signals also provides robust and efficient estimation performance.

A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis

  • Ren, Xiaojun;Sug, HyonTai;Lee, HoonJae
    • Journal of information and communication convergence engineering
    • /
    • 제13권2호
    • /
    • pp.105-112
    • /
    • 2015
  • The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.