• 제목/요약/키워드: Estimation error analysis

검색결과 1,149건 처리시간 0.03초

Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry

  • Park, Tae-Jin;Lee, Woo-Kyun;Lee, Jong-Yeol;Hayashi, Masato;Tang, Yanhong;Kwak, Doo-Ahn;Kwak, Han-Bin;Kim, Moon-Il;Cui, Guishan;Nam, Ki-Jun
    • 대한원격탐사학회지
    • /
    • 제28권3호
    • /
    • pp.307-318
    • /
    • 2012
  • To understand forest structures, the Geoscience Laser Altimeter System (GLAS) instrument have been employed to measure and monitor forest canopy with feasibility of acquiring three dimensional canopy structure information. This study tried to examine the potential of GLAS dataset in measuring forest canopy structures, particularly maximum canopy height estimation. To estimate maximum canopy height using feasible GLAS dataset, we simply used difference between signal start and ground peak derived from Gaussian decomposition method. After estimation procedure, maximum canopy height was derived from airborne Light Detection and Ranging (LiDAR) data and it was applied to evaluate the accuracy of that of GLAS estimation. In addition, several influences, such as topographical and biophysical factors, were analyzed and discussed to explain error sources of direct maximum canopy height estimation using GLAS data. In the result of estimation using direct method, a root mean square error (RMSE) was estimated at 8.15 m. The estimation tended to be overestimated when comparing to derivations of airborne LiDAR. According to the result of error occurrences analysis, we need to consider these error sources, particularly terrain slope within GLAS footprint, and to apply statistical regression approach based on various parameters from a Gaussian decomposition for accurate and reliable maximum canopy height estimation.

MIMO 시스템의 채널 용량에 대한 채널 추정 오차의 영향 분석 (Effect of Channel Estimation Error on Capacity of MIMO Systems)

  • 함재상;심세준;이충용;박현철;홍대식
    • 대한전자공학회논문지TC
    • /
    • 제41권8호
    • /
    • pp.63-68
    • /
    • 2004
  • 채널 추정 오차가 존재하는 상황에서 MIMO 시스템의 채널 용량을 수식적으로 분석한다. 수식적인 분석에 의해, 채널 용량은 평균 신호 대 잡음비 (SNR) 와 함께 채널 추정 오차 (MSE)에 영향을 받음을 알 수 있다. 또한 본 논문에서는 평균 SNR 과 채널 용량의 손실량이 제한되어 있을 경우, 허용가능한 채널 추정 오차를 구함으로써 주어진 시스템에 적합한 채널 추정기법을 선택하는 기준을 제시한다. 실험 결과로부터 1 bps/Hz 채널용량의 손실에 대해 허용 가능한 채널 추정 오차는 20dB와 40dB의 평균 신호 대 잡음비에서 각각 10/sup -2/와 10/sup -4/임을 확인 할 수 있다.

세 개의 트랜스폰더로 이루어진 장기선 위치추적장치의 민감도 해석 (Sensitivity Analysis of Long Baseline System with Three Transponders)

  • 김시문;이판묵;이종무;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.27-31
    • /
    • 2003
  • Underwater acoustic navigation systems are classified into three systems: ultra-short baseline (USBL), short baseline (SBL), and long baseline (LBL). Because the USBL system estimates the angle of a submersible, the estimation error becomes large if the submersible is far from the USBL transducer array mounted under a support vessel. SBL and LBL systems estimate submersible's location more accurately because they have wider distribution of measuring sensors. Especially LBL systems are widely used as a navigation system for deep ocean applications. Although it is most accurate system it still has estimation errors because of noise, measurement error, refraction and multi-path of acoustic signal, or wrong information of the distributed transponders. In this paper the estimation error of the LBL system are analyzed from a point of sensitivity. It is assumed that the error exists only in the distance between a submersible and the transponders. For this purpose sensitivity of the estimated position with respect to relative distances between them is analyzed. The result says that estimation error is small if the submersible is close to transponders but not near the ocean bottom.

  • PDF

절점이동과 단항증가법에 의한 이차원 평면문제의 적응 유한요소 해석 (Adaptive Finite Element Analysis of 2-D Plane Problems Using the rp-Method)

  • 박병성;임장근
    • 한국전산구조공학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2004
  • 최근, 유한요소해석견과의 신뢰도를 향상시키기 위하여 활발하게 연구되고 있는 적응유한요소해석은 반복계산을 통해서 해석결과의 오차가 사용자에 의해 지정된 허용오차와 같아지도록 하는 해석방법이다. 이와 간은 적응유한요소해석은 해석결과의 오차평가와 이에 따른 유한요소의 재구성과정으로 나누어진다. rp방법에서는 절점의 위치를 이동시켜 요소의 크기를 조절하는 r방법과 형상함수찻수를 증가시키는 p방법을 동시에 적용함으로써 적응해석의 유효성을 향상시키고자 하였다. 제안한 rp방법의 특성을 규명하고 적응해석의 유효성을 보이기 위하여 전형적인 이차원 평면문제들을 해석하고 그 결과를 검토하였다.

R-P법에 의한 이차원 평면문제의 적응 유한요소 해석 (Adaptive Finite Element Analysis of 2-D Plane Problems Using the R-P version)

  • 정상욱;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.345-350
    • /
    • 2000
  • Adaptive finite element analysis, which its solution error meets with the user defined allowable error, is recently used far improving reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and another is the reconstruction of finite elements. In the rp-method, an element size is controlled by relocating of nodal positions(r-method) and the order of an element shape function is determined by the hierarchical polynomial(p-method) corresponding to the element solution error. In order to show the effectiveness and accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods. As a result of this study, following conclusions are obtained. (1) rp-method is more accurate and effective than the r- and p-method. (2) The solution convergency of the rp-method is controlled by means of the iterative calculation numbers of the r- and p- method each other.

  • PDF

역기전력 추정 기반 SMPMSM 센서리스 드라이브에서 저항 오차가 대역폭에 미치는 영향 (Influence of Resistance Error to the Bandwidth of Back-EMF Estimation based SMPMSM Sensorless Drives)

  • 김재석;설승기
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.418-426
    • /
    • 2016
  • This paper analyzes the effect of resistance error to the performance of sensorless drive system of surface-mounted permanent magnet synchronous machine (SMPMSM) based on the back-EMF observer. The analysis shows that the bandwidth of the entire sensorless drive system decreased in the low-speed region when using smaller resistance value than the actual one in the back-EMF observer. Even if the back-EMF observer invokes estimation error, the entire sensorless drive system does not make any steady-state position error. These characteristics may have positive effects such as extension of the low speed limit that goes further down in the sensorless drive. The validity of the analysis is verified by the experimental setup comprising the MG set.

이진 마르코프 연쇄 모형 기반 실시간 원격 추정값의 오차 분석 (Analysis of Real-time Error for Remote Estimation Based on Binary Markov Chain Model)

  • Lee, Yutae
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.317-320
    • /
    • 2022
  • This paper studies real-time error in the context of monitoring a symmetric binary information source over a delay system. To obtain the average real-time error, the delay system is modeled and analyzed as a discrete time Markov chain with a finite state space. Numerical analysis is performed on various system parameters such as state transition probabilities of information source, transmission times, and transmission frequencies. Given state transition probabilities and transmission times, we investigate the relationship between the transmission frequency and the average real-time error. The results can be used to investigate the relationship between real-time errors and age of information.

Analysis and Improvement of Low-Frequency Control of Speed-Sensorless AC Drive Fed by Three-Level Inverter

  • Chang Jie (Jay)
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.358-365
    • /
    • 2005
  • In induction machine drive without a speed sensor, the estimation of the motor flux and speed often becomes deteriorated at low speeds with low back EMF. Our analysis shows that, in addition to the state resistance variation, the estimated value of field orientation angle is often corrupted by accumulative errors from the integration of voltage variables at motor terminals that have low signal/noise ratio at low frequencies. A repetitive loop path of integration in the feedback can amplify this type of error, thus speeding up the degradation process. The control system runs into information starvation due to the loss of correct field orientation. The machine's spiral vectors are controlled only in a reduced dimension in this situation. A novel control scheme is developed to improve the control performance of motor's current, torque and speed at low frequencies. The scheme gains a full-dimensional vector control and is less sensitive to the combined effect of the error sources at the low frequencies. Experimental tests demonstrate promising performances are achievable even below 0.5 Hz.

Wind and Airspeed Error Estimation with GPS and Pitot-static System for Small UAV

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.344-351
    • /
    • 2017
  • This paper presents a method to estimate steady wind and airspeed bias error using an aircraft with GPS and airspeed sensor. The estimation uses the vector relation between the inertial, air, and wind velocities through a novel design of an extended Kalman filter. The observability analysis is also presented to show that the aircraft is required to keep changing its flight direction for the desired observability. The feasibility and performance of the proposed algorithm is demonstrated through simulations and flight experiments.

SER Analysis of Multi-Way Relay Networks with M-QAM Modulation in the Presence of Imperfect Channel Estimation

  • Islam, Shama N.;Durrani, Salman;Sadeghi, Parastoo
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.677-687
    • /
    • 2016
  • Multi-way relay networks (MWRNs) allow multiple users to exchange information with each other through a single relay terminal. MWRNs are often incorporated with capacity achieving lattice codes to enable the benefits of high-rate signal constellations to be extracted. In this paper, we analytically characterize the symbol error rate (SER) performance of a functional decode and forward (FDF) MWRN in the presence of channel estimation errors. Considering M-ary quadrature amplitude modulation (QAM) with square constellations as an important special case of lattice codes, we obtain asymptotic expressions for the average SER for a user in FDF MWRN. The accuracy of the analysis at high signal-to-noise ratio is validated by comparison with the simulation results. The analysis shows that when a user decodes other users with better channel conditions than itself, the decoding user experiences better error performance. The analytical results allow system designers to accurately assess the non-trivial impact of channel estimation errors and the users' channel conditions on the SER performance of a FDF MWRN with M-QAM modulation.