• Title/Summary/Keyword: Estimation Models

Search Result 2,837, Processing Time 0.035 seconds

Designing an Input Parameters Setting Model for Reducing the Difficulty of Input Parameters Estimations in Cross Impact Analysis (기술상호효과분석의 입력변수 추정 난이도 경감을 위한 입력변수 설정모형의 설계)

  • Jun, Jungchul;Kwon, Cheolshin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.42 no.2
    • /
    • pp.35-48
    • /
    • 2017
  • As the technology convergence paradigm emerges, the need for "CIA techniques" to analyze the mutual effects of technology is increasing. However, since the CIA input parameter estimation is difficult, the present study suggests a "CIA input parameter setting model" to alleviate the difficulty of CIA input parameter estimation. This paper is focused on the difference of measurement difficulty by each scale which expert's estimation behavior was defined as measurement activity quantifying the judgment of future technology. Therefore, this model is designed to estimate the input variable as a sequence or isometric scale that is relatively easy to measure, and then converts it into a probability value. The input parameter setting model of the CIA technique consists of three sub-models : 'probability value derivation model', 'influence estimation model', and 'impact value calculation model', in order to develop a series of models the Thurstone V model, Regression Analysis, etc has been used.

Estimation of Prediction Values in ARMA Models via the Transformation and Back-Transformation Method (변환-역변환을 통한 자기회귀이동평균모형에서의 예측값 추정)

  • Yeo, In-Kwon;Cho, Hye-Min
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.537-546
    • /
    • 2008
  • One of main goals of time series analysis is to estimate prediction of future values. In this paper, we investigate the bias problem when the transformation and back- transformation approach is applied in ARMA models and introduce a modified smearing estimation to reduce the bias. An empirical study on the returns of KOSDAQ index via Yeo-Johnson transformation was executed to compare the performance of existing methods and proposed methods and showed that proposed approaches provide a bias-reduced estimation of the prediction value.

Evaluation of N2 method for damage estimation of MDOF systems

  • Yaghmaei-Sabegh, Saman;Zafarvand, Sadaf;Makaremi, Sahar
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.155-165
    • /
    • 2018
  • Methods based on nonlinear static analysis as simple tools could be used for the seismic analysis and assessment of structures. In the present study, capability of the N2 method as a well-known nonlinear analysis procedure examines for the estimation of the damage index of multi-storey reinforced concrete frames. In the implemented framework, equivalent single-degree-of-freedom (SDOF) models are utilized for the global damage estimation of multi-degree-of-freedom (MDOF) systems. This method does not require high computational analysis and subsequently decreases the required time of seismic design and assessment process. To develop the methodology, RC frames with period range from 0.4 to 2.0 s under 40 records are studied. The effectiveness of proposed technique is evaluated through numerical study under near- and far-field earthquake ground motions. Finally, the results of developed models are compared with two other simplified schemes along with nonlinear time history analysis results of multi-storey frames. To improve the accuracy of damage estimation, a modified relation is presented based on the N2 method results for near- and far-field earthquakes.

Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm (통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측)

  • Jung, Jin Soo;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

A Study on Effort Estimation Model in Software Development Using Component Tools (컴포넌트 개발 툴을 사용한 소프트웨어 개발 노력도에 관한 연구)

  • 서정석;김승렬
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.18-29
    • /
    • 2000
  • This study presents a cost of efforts estimation model under the environment of developing a software using component software package tools. The approach taken was to drive from variety of sources in an attempt to identify the most significant factors. These sources ranged from already existing cost models like COTS integration cost and COCOMO models to information gathered in a data collection survey. Once the candidate drivers had been identified, the next step was to interview with the experts who had been experienced more than 5 years in component development area to identify the most significant driving factors. From those selected drivers, I established the Cost Estimation Model which is suitable for the developing a software using component software package tools by applying the general from of the well-know COCOMO software cost estimation model. To established the best fit in Korean Software industry, I used Regression statistical analysis with 31 data collections.

  • PDF

Software Effort Estimation Using Artificial Intelligence Approaches (인공지능 접근방법에 의한 S/W 공수예측)

  • Jun, Eung-Sup
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.616-623
    • /
    • 2003
  • Since the computing environment changes very rapidly, the estimation of software effort is very difficult because it is not easy to collect a sufficient number of relevant cases from the historical data. If we pinpoint the cases, the number of cases becomes too small. However if we adopt too many cases, the relevance declines. So in this paper we attempt to balance the number of cases and relevance. Since many researches on software effort estimation showed that the neural network models perform at least as well as the other approaches, so we selected the neural network model as the basic estimator. We propose a search method that finds the right level of relevant cases for the neural network model. For the selected case set, eliminating the qualitative input factors with the same values can reduce the scale of the neural network model. Since there exists a multitude of combinations of case sets, we need to search for the optimal reduced neural network model and corresponding case set. To find the quasi-optimal model from the hierarchy of reduced neural network models, we adopted the beam search technique and devised the Case-Set Selection Algorithm. This algorithm can be adopted in the case-adaptive software effort estimation systems.

  • PDF

Investigation on the Accuracy of bundle Adjustments and Exterior Orientation Parameter Estimation of Linear Pushbroom Sensor Models (선형 푸시브룸 센서모델의 번들조정 정확도 및 외부표정요소추정 정확도 분석)

  • Kim Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.137-145
    • /
    • 2005
  • In this paper, we investigate the accuracy of various sensor models developed for linear pushbroom satellite images. We define the accuracy of a sensor model in two aspects: the accuracy of bundle adjustments and the accuracy of estimating exterior orientation parameters. The first accuracy has been analyzed and reported frequently whereas the second accuracy has somewhat been neglected. We argue that the second accuracy is as important as the first one. The second accuracy describes a model's ability to predict satellite orbit and attitude, which has many direct and indirect applications. Analysis was carried out on the traditional collinearity-based sensor models and orbit-based sensor models. Collinearity-based models were originally developed for aerial photos and modified for linear pushbroom-type satellite images. Orbit-based models have been used within satellite communities for satellite control and orbit determination. Models were tested with two Kompsat-1 EOC scenes and GPS-driven control points. Test results showed that orbit-based models produced better estimation of exterior orientation parameters while maintained comparable accuracy on bundle adjustments.

A Cost Estimation Development Methodology via CER's Linear Combination (CER 선형결합을 통한 비용추정 모델 개발)

  • Jung, Won-Il;Lee, Yong-Bok;Kim, Dong-Kyu;Kan, Sung-Jin
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.347-356
    • /
    • 2012
  • The acquisition cost of defense weapon system has been continuously increasing because of art-of-technology of it. This phenomenon requires efficiency and transparency in the weapon system acquisition process through cost estimation. Therefore cost estimation is very important to the government acquisition programs to support decisions about funding and to evaluate resource requirement as a key decision point. The Commercial parametric cost estimating models have been using extensively to obtain appropriate cost estimates in early acquisition phase. These models have many restrictions to ensure the cost estimating result in Korean defense environment because they are developed based on foreign R&D data. Also estimation results are different from Korean defense industry accounting system. So, some studies have been tried to develop a CER (Cost Estimation Relationship) based on the Korean historical data. However, there are some restrictions to improve the predictability and ensure the stability of the developed singular CERs which consider the following data characteristics individually. The the abnormal conditions of data that is multicollinearity, outlier and heteroscedasticity under rack of the number of observations. In this paper, a CER's Linear Combining Model is proposed to overcome those limitations which guarantee more accurate estimation (25.42% higher precision) than other singular CERs. At least, this study is meaningful as a first attempt to improve the predictability of CER with insufficient data. The methodology suggested in this study will be useful to develop a complex Korean version cost estimating model development in future.

UNCERTAINTIES INVOLVED IN THE IONOSPHERIC CONDUCTIVITY ESTIMATION (전리층 전기전도도의 추정과 관련된 불확실성)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.243-254
    • /
    • 2002
  • Various uncertainties involved in ionospheric conductivity estimation utilizing the electron density profile obtained from the Sondrestrom incoherent scatter radar are examined. First, we compare the conductivity which is based on raw electron density and the one based on corrected electron density that takes into account the effects of the difference between the electron and ion temperatures and the Debye length. The corrected electron density yields higher Pedersen and Hall conductivities than the raw electron density does. Second, the dependence of collision frequency model on the conductivity estimation is examined. Below 110 km conductivity does not depend significantly on collision frequency models. Above 110 km, however, the collision models affect the conductivity estimation. Third, the influence of the electron and ion temperatures on the conductivity estimation is examined. Electron and ion temperatures carrying an error of about 10% do not seem to affect significantly the conductivity estimation. Fourth, also examined is the effect of the choice of the altitude range of integration in calculating the height-integrated conductivity, conductance. It has been demonstrated that the lower and upper boundaries of the integration are quite sensitive to the estimation of the Hall and Pedersen conductances, respectively.

Non-Homogeneous Haze Synthesis for Hazy Image Depth Estimation Using Deep Learning (불균일 안개 영상 합성을 이용한 딥러닝 기반 안개 영상 깊이 추정)

  • Choi, Yeongcheol;Paik, Jeehyun;Ju, Gwangjin;Lee, Donggun;Hwang, Gyeongha;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.45-54
    • /
    • 2022
  • Image depth estimation is a technology that is the basis of various image analysis. As analysis methods using deep learning models emerge, studies using deep learning in image depth estimation are being actively conducted. Currently, most deep learning-based depth estimation models are being trained with clean and ideal images. However, due to the lack of data on adverse conditions such as haze or fog, the depth estimation may not work well in such an environment. It is hard to sufficiently secure an image in these environments, and in particular, obtaining non-homogeneous haze data is a very difficult problem. In order to solve this problem, in this study, we propose a method of synthesizing non-homogeneous haze images and a learning method for a monocular depth estimation deep learning model using this method. Considering that haze mainly occurs outdoors, datasets mainly containing outdoor images are constructed. Experiment results show that the model with the proposed method is good at estimating depth in both synthesized and real haze data.