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Abstract

Since the computing environment changes very rapidly, the estimation of software effort is very difficult because it is not
easy to collect a sufficient number of relevant cases from the historical data. If we pinpoint the cases, the number of cases
becomes too small. However if we adopt too many cases, the relevance declines. So in this paper we attempt to balance the
number of cases and relevance. Since many researches on software effort estimation showed that the neural network models
perform at least as well as the other approaches, so we selected the neural network model as the basic estimator. We
propose a search method that finds the right level of relevant cases for the neural network model. For the selected case set,
eliminating the qualitative input factors with the same values can reduce the scale of the neural network model. Since there
exists a multitude of combinations of case sets, we need to search for the optimal reduced neural network model and
corresponding case set. To find the quasi-optimal model from the hierarchy of reduced neural network models, we adopted
the beam search technique and devised the Case-Set Selection Algorithm. This algorithm can be adopted in the case-

adaptive software effort estimation systems.

1. Introduction

Accurate estimation of software effort is one of the key issues
for the effective management of software projects. However,
accurate estimation is very difficult, because software
development is a labor-intensive task and an intangible
creation process. Many researchers developed models for
estimating software effort and assessed the factors that affect
software development. Most of the software effort estimations
are attempted using statistical models, case-based reasoning,
and neural networks. A common problem with any of these
models is that models are not flexible enough to keep up with
the rapidly changing computing environment (Saiedian, Band
& Barney, 1992; Vicinanza, Mukhopadhyay & Prietula, 1991).
Among the available estimation models, the neural network
models performed at least as well as the other approaches (Hill,
O’Conner & Remus, 1994), so in this research we select the
neural network model as the estimator. To handle the
estimation of the new breed of projects, we can estimate better

by using only the relevant cases. But this means that the
number of cases will be decreased. Thus we need to balance
relevance and case availability.

To classify the case sets and corresponding neural models, we
propose to use the qualitative input factors as criteria of case
classification. The qualitative input factors that have the same
values can be eliminated from the model, resulting in the
reduced neural network models. So we need to seek the
optimal or quasi-optimal case-selective neural network model
among them. For this purpose, we devised the Case-Set
Selection Algorithm based on the beam search technique with
an adequate stopping rule and beam width. According to the
paired t-test, we could prove that the quasi-optimal case-
selective neural network model can significantly reduce errors
more than the full neural network model.

2. Software Effort Estimation Models

There are four major approaches in software effort
estimations: the statistical model, the knowledge-based model,
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the case-based reasoning model and the neural network model.
Boehm et al. (2000) summarized that the rapid pace of change
in software technology challenged all classes of techniques.
The primary conclusion is that no single technique is best for
all situations, and that a careful comparison of the results of

several approaches is most likely to produce realistic estimates.

Statistical software effort estimation models adopt
mathematical functions between the causing factors and
resulting efforts. The statistical models require estimating the
parameters based on the historical data. Among the statistical
models, the COCOMO (Boehm, 1984a, 1988b) and function
point (Albrecht & Gaffney, 1983) models are most widely
known.

A limitation of the models that adopt the KDSI (Thousands of
Delivered Source Instruction) as an independent variable is
that the number of lines of code cannot be known in advance
of the system development. And the number of lines of code is
not meaningful because of different computing environments.
Due to these reasons, the error rates of statistical models are as
high as 50% ~ 100% (Bergeron & St-Amaud, 1992; Kermerer,
1987; Mukhopadhyay, Vicinanza & Prietula, 1992; Srinivasan
& Fisher, 1995; Vicinanza, Mukhopadhyay & Prietula, 1991).

To overcome the limitation of statistical models, Artificial
Intelligence (AI) techniques were widely attempted (Hill,
O’Connor & Remus, 1994; Simon, 1986). Prietula et al.
(1998) emphasized that qualitative improvements in estimation
accuracy could come from the insight of experts. However, the
qualitative knowledge-based approach has an inherent
limitation in quantitative estimation of software effort. So
major Al techniques, which are practically applicable, are
case-based reasoning and neural network models.

The CBR model for software effort estimation requires
collecting past project cases, and retrieving the case(s) most
similar to the target project according to a pre-defined
similarity measure. Up to this point, the CBR is a very
effective approach. However the modification of past cases
identifying their differences from the target, is in most
circumstances very difficult. Lee et al. (1998) have developed
the process of rule- and constraint-based modification for the
real world construction project-planning network. The
modification of the past case’s result identifying its difference
to the target in terms of man-month as a quantitative unit is in
most cases very difficult. In the software effort estimation
process, the modification process requires a numeric model
that can tell the difference of numerically presented effort
between the old case and new one. So the CBR approach alone
cannot fulfill the goal of software effort estimation.

The neural network with hidden layers allows the nonlinear
mapping function between the causing input factors and output
results. To handle the many qualitative input factors, the
neural network model is more suitable than statistical models,
and many studies have shown that the performance of the
neural network model is at least as powerful as statistical
models (Hill, O’Connor & Remus, 1994). Many researchers

have applied the neural network models for software effort
estimation expecting that they can outperform statistical
models. Shukla (2000) demonstrated substantial improvement
in prediction accuracy by using the neuro-genetic approach as
compared to both a regression-tree-based conventional
approach and neural network approach by back-propagation
algorithm.

However, the neural network model as well as others has the
problem of selecting the quasi-optimal case set because the
computing environment that significantly influences the
software effort changes so rapidly. If we use all of the past
cases, the model becomes too dull for the special
characteristics of the new environment. So we need to use the
relevant similar cases that can explain the specialty of the
target project. However, we may not have a sufficient number
of cases that are similar enough to use for estimation. Thus we
need to balance similarity and case point availability.

Let us call the neural network model that uses all possible
input factors and all available cases, the Full Neural Network
Model (in short, Full Model). To distinguish the neural
network model that uses reduced relevant cases and reduced
input factors (by eliminating the qualitative factors that have
the same values) from the Full Model, let us call it the
Reduced Neural Network Model (in short, Reduced Model).
The goal of our research is to find the best relevant case set
and corresponding quasi-optimal reduced neural network
model for software effort estimation (Jun & Lee, 2001).
Although we develop this approach for the software effort
estimation in this paper, this approach can be used for other
dynamic environments too.

3. Full Neural Network Model for Software
Effort Estimation

Although our goal is finding the optimally reduced neural
network model, let us start with the full neural network model
first because we need to compare their performances.

3.1 Factors for Software Effort Estimation

There are numerous variables that can influence the software
efforts required to complete a project (Boehm, 1988;
Blackburn & Scudder, 1996; Deephouse, Mukhopadhyay,
Goldenson & Kellner, 1996; Finnie, Wittig & Petkov, 1993;
Maxwell, Wassenhove & Dutta, 1996; Rasch, Cuccia & Amer,
1995; Rasch & Tosi, 1992; Redmond-Pyle, 1996; Roberts,
Gibson, Fields & Rainer, 1998; Subramanian & Zarnich,
1996). Four categories of factors that are used in various
models are selected: project requirement, characteristics of
products, staff skill level, and computing platform. We selected
23 input factors and their values as listed in Table 1, based on
surveyed opinions of 30 experts who have experiences of
software development and maintenance.

In Table 1, the input factors are identified as I;, i = 1,...,23.
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The input factors can be categorized into quantitative and
qualitative, as denoted QT and QL in the fourth column. The

Table I - Definition of Input Factors and Case Groups

qualitative factors may be used either as input variables or as
classifiers of case sets.

(OT : Quantitative, OL : Qualitative)

Categories Input Factors Values Type Qualitative
QT | QL Variables
Project 1, | Required Training and Average Required Man- |,
Requirement Education Months
L, | Size No. of Modules *
I; | Development Type New Development * v
Maintenance !
1, | Urgency Normal * v
Urgent ?
Character- I5 | Processing Type Batch * ,
istics Online "
of Product Used Algorithms : -Relative Fraction Value
I | -Database Access Percentage
I | -1/O Process Percentage *
I | -Math./Statistic Process | Percentage
I, | -Al based Process Percentage
Application Task -Relative Fraction Value
I, | Structure Percentage
o | -Strategic Planning Percentage
I, | -Tactical Management Percentage *
; | -Operational Control
I
2
Staff Beginner :
Level I, | -Number No. of Persons
3 | -Experience of Similar Average Months of | *
I, | Application Experience
4 | Development
Junior :
1; | -Number No. of Persons
5 | ~Experience of Similar Average Months of [ *
I, | Application Experience
s | Development
Senior :
I; | -Number No. of Persons
7 | -Experience of Similar Average Months of | *
I, | Application Experience
g | Development
Computing | 7; | Network Type Centralized Network *
Platform |, Distributed Network "
I, | Reuse of Modules Module Reuse * v
0 No Module Reuse ’
I, | Use of Formal | Formal Methodology * N
1 | Methodology Informal Methodology °
I, | Language 3GL * v
2 4GL ’
I, | Use of CASE Tools CASE Tool * v
3 No CASE Tool 8
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3.2 Full Neunral Network Model

We designed a full type of neural network model for software
effort estimation as shown in Figure 1. The full neural
network model has 23 input factors in Table 1, one output in
man-months, and one hidden layer with the nodes from 23/2
(we applied integer 12) to 2*23+1 (which is 47) with an
increment of 5. Since there is no concrete theory of
determining the number of hidden nodes, we tried between /2
and 2/ + I nodes with an increment of 5 (where I is the
number of inputs) (Hect-Nielsen, 1990; Venkatachalam, 1993;
Bjornson & Barney, 1999). The model is trained by the back-
propagation algorithm starting from 5,000 epochs to 30,000
epochs with an increment of 5,000.

We have collected 112 cases mainly from two companies:
Korea Electric Power Cooperation and Samsung Electronics.

Eighty-two cases are used for training, and 30 cases for testing.

Among the 42 trials of Full Models, the optimal performance
was found with 17 hidden nodes at 15,000 epochs. To measure
the errors, we adopted the popular measurement: Mean
Magnitude of Relative Error (MMRE) as defined in (1)
(Kermerer, 1987).

MMRE =[Z Wixxoo]/n @)
i=l i

Y; implies actual man-months spent for the Project i, and E(Y))
the estimated effort. n is the number of test cases. The
MMREs of 42 trials ranged between 17.2% and 22.8 %, with
the minimum value at 17.2%.

Input Factors

1 1 gy

12

Effort{ Man-Month)

/ﬂ T '\\S\
XX

Input Layer Hidden Layer Output Layer

Figure 1 - Full Neural Network Model for Software Effort
Estimation

4. Case-Selective Reduced Neural Network
Models

In designing the case-selective reduced neural network models,
we need to define the input nodes and select the relevant case
set for learning. In selecting the relevant case set, we need to
consider the sensitivity of the sample-size effect.

4.1 Reduced Neural Network Models

As defined earlier, the reduced neural network models are the
ones that have eliminated the qualitative input factors that
have the same values. So in the software effort estimation
model, the number of input factors can be reduced from 23 (in
the full model) to at most 15 because there are 8 qualitative
factors.

Now the question is how to find the optimal combination by

eliminating input factors out of &
g 1np 3 ,C, = 255

=1

alternative combinations.

Obviously the demerit of the reduced model is the reduced
number of case points at the cost of enhanced relevance. So,
just more reduction of the input factors does not necessarily
mean the performance improvement.

4.2 Measure of Similarity and Case Sets Hierarchy

The similarity can be measured as the weighted sum of the
distance of the factors in the cases. For the classification of
case sets, we use the qualitative factors as the variables of
similarity measurement. All weights are assumed to be equal.
For instance, the similarity level s means that s qualitative
variables have the same values with the new project to be
estimated.

Assume that there are two values in each qualitative variable.
Then the possible case set in each level of similarity s is C; *

2°. With 8 qualitative variables, there are i ,C *¥2°= 6,560
s=1

combinations of value sets. Qur concern is how to organize the
case sets. Due to the relationship between the case set and its
corresponding reduced model, we may just select either the
case set or the reduced model, because the other part will be
determined automatically.

One way of organizing the case sets is by the hierarchy of
similarity level, regarding the level as the depth of the tree as
depicted in Figure 2. The notation is formally defined in
section 5, but tentatively D,(.) means the case set of similarity
level s, and v;, i=I,...,8 means the qualitative variables that
have the same values. The subscripts a and » imply the
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illustrative values of the variables. The number in the bubble
of the case set is the available sample size usable for the
training. Note that the sample size diminishes as the level of
similarity becomes deeper.

Similarity Level 1

Similarity Level 2

9

Similarity Level 3
9

Ds(v15:V30Ved
14

Similarity Level 8

Figure 2 - Relevant Case Set Hierarchy

4.3 Sample Size Effect and Pruning Policy

Hu et al. (1999) claimed that neural network predictions are
quite accurate even when the sample size is relatively small.
Twomey and Smith (1998) demonstrated that when the sample
size is small, the error of a network is more sensitive to the
construction of training sample. Statistically, the sample size
still affects the precision of the neural network model.

When the sample size is too small, the credibility of the model
will become too low. So we have to determine the cutting
point by deciding an appropriate lower bound as an acceptable
sample size. This process is somewhat judgmental depending
upon the available data and acceptable precision level. In this
study, we have evaluated the effect of sample size as depicted
in Figure 3. Since the error level becomes quite flattened
above 7, we selected 7 as the cutting point of these models.
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S. Search for the Quasi-Optimal Case-Selective
Neural Network Model

5.1 Non-monotonicity and Beam Search

To develop a search technique named the Case-Set Selection
Algorithm, the first concern is its monotonicity and global
optimality. According to our test, the MMRE of the best-
reduced model in each similarity level is not monotonic to s.
This implies that we have to determine a rule for when to stop
after a certain number of iterations of local optima. To reflect
this feature, we compare the sensitivity of iterations, and select
the most adequate stopping rule.

The second concern is the selection of the search scheme. We
seek a scheme that is computationally affordable with
acceptable precision. For this purpose, we used the Beam

Search technique, and evaluated the sensitivity of beam widths.

Beam search is a graphic algorithm with limited beam width
for pruning (Sabuncuoglu & Bayiz, 1999).

5.2 Notations for Case Set Selection Algorithm

To develop the Case-Set Selection Algorithm based on the
beam search technique with the adequate stopping rule and
beam width, let us define the notations formally and specify
the algorithm using the notation.

Notations

D : Case set (or Data set)

s : Similarity level (which means the number of matching
qualitative variables)

Dy : Case set at the similarity level of s

Dy : Case set at the similarity level of zero implies the original
case set

V': Variable set
v;: Variable j
V=[vy,..., »] : variable set with p variables
U; : Value set of variable j
Ui = {ty, up,..., uig }
U?’: Value set of the target project

o _ o o o
U°={ Uj, Uy e ujq}

DV, U ) : Case sets hierarchy for all variables and values
DyV = U °) : Case sets hierarchy that matches the values of
the target project

Dy(v; = u; ) : A case set which matches a set of s variables

with the target project
e.g., Dy(v; = "New development”, vs = "Online”)

nfDy(v; = uf )] : Sample size of the case set Dy('v; = u; )
NN{ . ] : Neural Network Model

NN[D,(v; = u;)] = NN,[v; = uj ] : Neural network model

with the case set Dy(v; = u; )
e.g, NN;[v; = “New Development”, vi= “Online”’]
NN,fv; = u; ] = NNy[{ }] : Full neural network model with the

case set Dy(v; = V)

NN[D( _)] = NN/ ] : Neural Network Models Set with all
combinations of similarity levels s against the target project
MRE(NN,[v; = u; ]) = MRE(v; = u) : Mean Magnitude of
the Relative Error of the neural network model with the case
set Dy(v; = u;)

MRE({ }): Theset of MREs

OPEN set : The current neural network set that can be
expanded for search

LAST set : The neural network set that was in the OPEN a step
before. LAST does not expand, but needs to be kept for
comparison.

CLOSED set : the neural network set that cannot be expanded
any more.

TEMP : The expanded set from the current OPEN set.

BEST : The best neural network model found so far,
EXPAND[OPEN] : A command that request to expand the
neural models in the OPEN set of similarity level s to those of
level s+1.

MIN, {MRE({Set})} : Select the w neural network models with
the minimal MRE values in the Ser.

5.3 Case Set Selection Algorithm

The Case-Set Selection Algorithm is developed based on the
beam search technique. It starts with the Full Model and
expands toward the higher level of similarity and keeps the w-
best reduced models in each similarity level. The stopping
condition is determined by counting the occurrence of local
minima. The algorithm can be specified as follows using the
notations defined above:

0. Setting

Lower bound of sample size : LB, « »n°

Width of Beam Search : we v’

Iteration counter of local minimal point that stops the
search : z «2°

1. Initialization

s=0
LAST={}
CLOSED = {}

OPEN = {NNof v; = u; ]}
SOLVE NN,[ v; = u] J}

Progress « { }
increased or not.

; Flag that checks whether the error is
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BEST ¢ {MRE,(v; = uj )}

2. Expansion

s ¢« s5+1
TEMP « EXPAND[OPEN]
Prune the case set in s+ that does not satisfy n/D;.,(v; =

u)]>n
CLOSED « LAST
LAST « OPEN
SOLVE TEMP
OPEN « MIN, {MRE(TEMP)}

TEMP «{}
BEST « MIN,;{MRE(BEST), MRE(OPEN)}

3. Comparison

IF MIN,{MRE(LAST)} >MIN ;{MRE(OPEN)}
Progress « {“Non-increased Error”’}
GOTO the Expansion routine

ELSE

Progress « {“Increased Error”}
z «z-1
GOTO the Check the Stopping Condition routine.
4. Check the Stopping Condition
IFz=0
STOP the iteration
ELSE
GOTO the Expansion routine.

5.4 Performance of the Quasi-Optimal Reduced Model

The performance of the quasi-optimally reduced neural
network models is evaluated for the 30 test cases. We can see
that the average error of the full model 17.2% is reduced to
12.13%. According to the paired t-test between the two groups,
the quasi-optimal case-selective reduced model has
significantly less error than the full model (t-value = 8.271, p-
value =0.000). In this case, the quasi-optimal model has
sacrificed only 0.28% of errors on average from the true
optimal model, and has discovered 26 true optimal models out
of 30 test cases. The fitness measured by the degree of
determination of the quasi-optimal model (“sum of errors after
the quasi-optimal model” / “sum of errors with the full
model”) turns out 0.761. These results verify that the quasi-
optimal neural network model can significantly outperform the
full model.

6. Conclusion

To enhance the performance of software effort estimation
models under the rapidly changing computing environment,
we have attempted to use only the relevant cases and reduce

the qualitative input factors of neural networks that have the
same values. To find the quasi-optimal case-selective reduced
neural network model, we have devised the Case-Set Selection
Algorithm based on the beam search technique.

According to the test results with 30 cases, the result by the
quasi-optimal model significantly outperformed the original
full model. By developing a decision support system that can
implement this approach, the software effort can be estimated
adaptive to the addition of new cased from the up-to-date
computing environment. We propose two adjustment
strategies: local search and restructuring approaches. The
Case-Set Selection Algorithms can be used not only for the
software effort estimation, but also for any neural networks
models that need dynamic case adaptation.
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