• 제목/요약/키워드: Estimation Accuracy

검색결과 3,124건 처리시간 0.034초

New algorithm to estimate proton beam range for multi-slit prompt-gamma camera

  • Ku, Youngmo;Jung, Jaerin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3422-3428
    • /
    • 2022
  • The prompt gamma imaging (PGI) technique is considered as one of the most promising approaches to estimate the range of proton beam in the patient and unlock the full potential of proton therapy. In the PGI technique, a dedicated algorithm is required to estimate the range of the proton beam from the prompt gamma (PG) distribution acquired by a PGI system. In the present study, a new range estimation algorithm was developed for a multi-slit prompt-gamma camera, one of PGI systems, to estimate the range of proton beam with high accuracy. The performance of the developed algorithm was evaluated by Monte Carlo simulations for various beam/phantom combinations. Our results generally show that the developed algorithm is very robust, showing very high accuracy and precision for all the cases considered in the present study. The range estimation accuracy of the developed algorithm was 0.5-1.7 mm, which is approximately 1% of beam range, for 1×109 protons. Even for the typical number of protons for a spot (1×108), the range estimation accuracy of the developed algorithm was 2.1-4.6 mm and smaller than the range uncertainties and typical safety margin, while that of the existing algorithm was 2.5-9.6 mm.

Bayesian approach for the accuracy evaluating of the seismic demand estimation of SMRF

  • Ayoub Mehri Dehno;Hasan Aghabarati;Mehdi Mahdavi Adeli
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.117-130
    • /
    • 2024
  • Probabilistic model of seismic demand is the main tool used for seismic demand estimation, which is a fundamental component of the new performance-based design method. This model seeks to mathematically relate the seismic demand parameter and the ground motion intensity measure. This study is intended to use Bayesian analysis to evaluate the accuracy of the seismic demand estimation of Steel moment resisting frames (SMRFs) through a completely Bayesian method in statistical calculations. In this study, two types of intensity measures (earthquake intensity-related indices such as magnitude and distance and intensity indices related to ground motion and spectral response including peak ground acceleration (PGA) and spectral acceleration (SA)) have been used to form the models. In addition, an extensive database consisting of sixty accelerograms was used for time-series analysis, and the target structures included five SMRFs of three, six, nine, twelve and fifteen stories. The results of this study showed that for low-rise frames, first mode spectral acceleration index is sufficient to accurately estimate demand. However, for high-rise frames, two parameters should be used to increase the accuracy. In addition, adding the product of the square of earthquake magnitude multiplied by distance to the model can significantly increase the accuracy of seismic demand estimation.

소프트웨어 개발비 기준의 애플리케이션 유형과 품질 및 특성 보정요소 개선 (Improving the Application Type and Quality/Characteristics Adjustment Factors of the Korea Software Cost Estimation Standard)

  • 박찬규;김우제;서용원
    • 한국IT서비스학회지
    • /
    • 제8권2호
    • /
    • pp.43-70
    • /
    • 2009
  • As software development and maintenance cost increase quickly, information systems managers are more concerned about how to effectively manage software cost. To estimate the software development cost, most public institutes of Korea use the software cost estimation standard established by the government. Unfortunately, the accuracy of the estimation derived from the standard has not been satisfactory in spite of repetitive modifications made to improve it. One of the major reasons for the inaccuracy is that the standard has too small a number of cost adjustment factors to reflect the various characteristics of a software development project. To remedy this problem, we propose new cost adjustment factors which can be incorporated into the standard and are important to enhance the estimation accuracy, based on the analysis of several well-known software estimation models. Furthermore, by applying the proposed model to real world software projects, we show that the proposed model can produce more accurate estimates than the current standard.

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

정량적 강우강도 정확도 향상을 위한 단일편파와 이중편파레이더 강수량 합성 (Merging Radar Rainfalls of Single and Dual-polarization Radar to Improve the Accuracy of Quantitative Precipitation Estimation)

  • 이재경;김지현;박혜숙;석미경
    • 대기
    • /
    • 제24권3호
    • /
    • pp.365-378
    • /
    • 2014
  • The limits of S-band dual-polarization radars in Korea are not reflected on the recent weather forecasts of Korea Meteorological Administration and furthermore, they are only utilized for rainfall estimations and hydrometeor classification researches. Therefore, this study applied four merging methods [SA (Simple Average), WA (Weighted Average), SSE (Sum of Squared Error), TV (Time-varying mergence)] to the QPE (Quantitative Precipitation Estimation) model [called RAR (Radar-AWS Rainfall) calculation system] using single-polarization radars and S-band dual-polarization radar in order to improve the accuracy of the rainfall estimation of the RAR calculation system. As a result, the merging results of the WA and SSE methods, which are assigned different weights due to the accuracy of the individual model, performed better than the popular merging method, the SA (Simple Average) method. In particular, the results of TVWA (Time-Varying WA) and TVSSE (Time-Varying SSE), which were weighted differently due to the time-varying model error and standard deviation, were superior to the WA and SSE. Among of all the merging methods, the accuracy of the TVWA merging results showed the best performance. Therefore, merging the rainfalls from the RAR calculation system and S-band dual-polarization radar using the merging method proposed by this study enables to improve the accuracy of the quantitative rainfall estimation of the RAR calculation system. Moreover, this study is worthy of the fundamental research on the active utilization of dual-polarization radar for weather forecasts.

협대역 초음파 신호를 이용한 시간 영역에서의 감쇠 지수 예측 (Time-domain Estimation Algorithm for Ultrasonic Attenuation using Narrow-filtered Signals)

  • 심재윤;허돈;김형석
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1887-1893
    • /
    • 2016
  • The VSA(Video Signal Analysis) method is the time-domain approach for estimating ultrasonic attenuation which utilizes the envelop signals from backscattered rf signals. The echogenicity of backscattered ultrasonic signals, however, from deeper depths are distorted when the broadband transmit pulse is used and it degrades the estimation accuracy of attenuation coefficients. We propose the modified VSA method using adaptive bandpass filters according to the centroid shift of echo signals as a pulse propagates. The technique of dual-reference diffraction compensation is also proposed to minimize the estimation errors because the difference of attenuation properties between the reference and sample aggravates the estimation accuracy when the differences are accumulated in deeper depth. The proposed techniques minimize the distortion of relative echogenicity and maximize the signal-to-noise ratio at the given depth. Simulation results for numerical tissue-mimicking phantoms show that the Rectangular-shaped filter with the appropriate center frequency exhibits the best estimation performance and the technique of the dual-reference diffraction compensation dramatically improves accuracy for the region after the beam focus.

Dynamic displacement estimation by fusing biased high-sampling rate acceleration and low-sampling rate displacement measurements using two-stage Kalman estimator

  • Kim, Kiyoung;Choi, Jaemook;Koo, Gunhee;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.647-667
    • /
    • 2016
  • In this paper, dynamic displacement is estimated with high accuracy by blending high-sampling rate acceleration data with low-sampling rate displacement measurement using a two-stage Kalman estimator. In Stage 1, the two-stage Kalman estimator first approximates dynamic displacement. Then, the estimator in Stage 2 estimates a bias with high accuracy and refines the displacement estimate from Stage 1. In the previous Kalman filter based displacement techniques, the estimation accuracy can deteriorate due to (1) the discontinuities produced when the estimate is adjusted by displacement measurement and (2) slow convergence at the beginning of estimation. To resolve these drawbacks, the previous techniques adopt smoothing techniques, which involve additional future measurements in the estimation. However, the smoothing techniques require more computational time and resources and hamper real-time estimation. The proposed technique addresses the drawbacks of the previous techniques without smoothing. The performance of the proposed technique is verified under various dynamic loading, sampling rate and noise level conditions via a series of numerical simulations and experiments. Its performance is also compared with those of the existing Kalman filter based techniques.

Shifting Matrix를 이용한 DCT 기반 부화소 단위 움직임 예측 알고리즘 (DCT-Based Subpixel-Accuracy Motion Estimation Utilizing Shifting Matrix)

  • 신재영;류철
    • 한국통신학회논문지
    • /
    • 제40권2호
    • /
    • pp.372-379
    • /
    • 2015
  • 최근 동영상 압축 표준은 세밀한 움직임 정보를 확보하기 위해 1/4 화소 단위의 움직임 예측 알고리즘을 사용하고 있다. 일반적인 동영상 부호화기에서 사용하는 공간 영역에서의 움직임 예측은 부화소 단위 움직임 예측을 위한 보간 기술의 적용으로 인한 계산량 증가 문제가 발생한다. 본 논문에서는 주파수 영역에서 shifting matrix를 이용한 부화소 정밀도의 움직임 예측 알고리즘을 제안한다. 주파수 영역에서 shifting matrix 알고리즘을 사용함으로써 낮은 계산량으로 부화소 움직임 예측을 수행할 수 있었으며, 실험 결과 공간 영역에서의 움직임 예측 알고리즘에 비해 낮은 비트량과 높은 PSNR(peak signal-to-noise ratio)을 제공함을 확인하였다.

Estimation of Ionospheric Delays in Dual Frequency Positioning - Future Possibility of Using Pseudo Range Measurements -

  • Isshiki, Hiroshi
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.185-190
    • /
    • 2006
  • The correct estimation of the ionospheric delays is very important for the precise kinematic positioning especially in case of the long baseline. In case of triple frequency system, the ionospheric delays can be estimated from the measurements, but, in case of dual frequency system, the situation is not so simple. The precision of those supplied by the external information source such as IONEX is not sufficient. The high frequency component is neglected, and the precision of the low frequency component is not sufficient for the long baseline positioning. On the other hand, the high frequency component can be estimated from the phase range measurements. If the low frequency components are estimated by using the external information source or pseudo range measurements, a more reasonable estimation of the ionospheric delays may be possible. It has already been discussed by the author that the estimation of the low frequency components by using the external information source is not sufficient but fairly effective. The estimation using the pseudo range measurements is discussed in the present paper. The accuracy is not sufficient at present because of the errors in the pseudo range measurements. It is clarified that the bias errors in the pseudo range measurements are responsible for the poor accuracy of the ionospheric delays. However, if the accuracy of the pseudo range measurements is improved in future, the method would become very promising.

  • PDF

항적자료를 활용한 항공기 연료 소모량 추정 및 정확도 분석 (Estimation of Flight Fuel Consumption Based on Flight Track Data and Its Accuracy Analysis)

  • 박장훈;구성관;백호종
    • 한국항공운항학회지
    • /
    • 제22권4호
    • /
    • pp.25-33
    • /
    • 2014
  • As global warming becoming an environmentally serious issue, more attention is drawn to fuel consumption which is the direct source of green house gas emission. The fuel consumption by aircraft operation is not an exception. Motivated by the societal and environmental context, this paper explains a method for estimation of aircraft fuel consumed during their flights as well as the computational process using real flight track data. Applying so-called 'Total Energy Model' along with aircraft specific parameters provided in EUROCONTROL's Base of Aircraft Data (BADA) to aircraft radar track data, we estimate fuel consumption of individual aircraft flown between Gimpo and Jeju airports. We then assess the estimation accuracy by comparing the estimated fuel consumption with the actual one collected from an airline. The computational results are quite encouraging in that the method is able to estimate the actual fuel consumption within ${\pm}6{\sim}11%$ of error margin. The limitations and possible enhancements of the method are also discussed.