• Title/Summary/Keyword: Essential derived operator

Search Result 6, Processing Time 0.016 seconds

A Study on the Method of Optimizing the Test Order of Explosive Detection System Using Analytic Hierarchy Process and Objective Rating (계층분석방법 및 객관적평가법을 활용한 폭발물탐지장비 시험순서 최적화 방법에 관한 연구)

  • Sun-Ju, Won;Hyun Su, Sim;Yong Soo, Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.793-810
    • /
    • 2022
  • Purpose: As improving the search performance of aviation security equipment is considered essential, this study proposes the need for research on how to find an optimized test sequence that can reduce test time and operator power during the search function test of explosive detection systems. We derive the weights and work difficulty adjustment factor required to find the optimized test order. Methods: First, after setting the test factors, the time of each test and the difficulty scale determined by the worker who performed the test directly were used to derive weights. Second, the work difficulty adjustment coefficient was determined by combining the basic weight adjustment factor and corresponding to the body part used by the test using objective rating. Then the final standard time was derived by calculating the additional weights for the changeability of the test factors. Results: The order in which the final standard time is minimized when 50 tests are performed was defined as the optimized order. 50 tests should be conducted without duplication and the optimal order of tests was obtained when compared to previously numbered tests. As a result of minimizing the total standard time by using Excel's solver parameters, it was reduced by 379.14 seconds, about 6.32 minutes. Conclusion: We tried to express it in mathematical formulas to propose a method for setting an optimized test sequence even when testing is performed on other aviation security equipment. As a result, the optimal test order was derived from the operator's point of view, and it was demonstrated by minimizing the total standard time.

Consistency check algorithm for validation and re-diagnosis to improve the accuracy of abnormality diagnosis in nuclear power plants

  • Kim, Geunhee;Kim, Jae Min;Shin, Ji Hyeon;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3620-3630
    • /
    • 2022
  • The diagnosis of abnormalities in a nuclear power plant is essential to maintain power plant safety. When an abnormal event occurs, the operator diagnoses the event and selects the appropriate abnormal operating procedures and sub-procedures to implement the necessary measures. To support this, abnormality diagnosis systems using data-driven methods such as artificial neural networks and convolutional neural networks have been developed. However, data-driven models cannot always guarantee an accurate diagnosis because they cannot simulate all possible abnormal events. Therefore, abnormality diagnosis systems should be able to detect their own potential misdiagnosis. This paper proposes a rulebased diagnostic validation algorithm using a previously developed two-stage diagnosis model in abnormal situations. We analyzed the diagnostic results of the sub-procedure stage when the first diagnostic results were inaccurate and derived a rule to filter the inconsistent sub-procedure diagnostic results, which may be inaccurate diagnoses. In a case study, two abnormality diagnosis models were built using gated recurrent units and long short-term memory cells, and consistency checks on the diagnostic results from both models were performed to detect any inconsistencies. Based on this, a re-diagnosis was performed to select the label of the second-best value in the first diagnosis, after which the diagnosis accuracy increased. That is, the model proposed in this study made it possible to detect diagnostic failures by the developed consistency check of the sub-procedure diagnostic results. The consistency check process has the advantage that the operator can review the results and increase the diagnosis success rate by performing additional re-diagnoses. The developed model is expected to have increased applicability as an operator support system in terms of selecting the appropriate AOPs and sub-procedures with re-diagnosis, thereby further increasing abnormal event diagnostic accuracy.

Efficiency of Rotational Operators for Geometric Manipulation of Chain Molecules

  • Seok, Chaok;Coutsias, Evangelos A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1705-1708
    • /
    • 2007
  • Geometric manipulation of molecules is an essential elementary component in computational modeling programs for molecular structure, stability, dynamics, and design. The computational complexity of transformation of internal coordinates to Cartesian coordinates was discussed before.1 The use of rotation matrices was found to be slightly more efficient than that of quaternion although quaternion operators have been widely advertised for rotational operations, especially in molecular dynamics simulations of liquids where the orientation is a dynamical variable.2 The discussion on computational efficiency is extended here to a more general case in which bond angles and sidechain torsion angles are allowed to vary. The algorithm of Thompson3 is derived again in terms of quaternions as well as rotation matrices, and an algorithm with optimal efficiency is described. The algorithm based on rotation matrices is again found to be slightly more efficient than that based on quaternions.

Investigation of Open-Loop Transmit Power Control Parameters for Homogeneous and Heterogeneous Small-Cell Uplinks

  • Haider, Amir;Sinha, Rashmi Sharan;Hwang, Seung-Hoon
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • In Long Term Evolution (LTE) cellular networks, the transmit power control (TPC) mechanism consists of two parts: the open loop (OL) and closed loop. Most cellular networks consider OL/TPC because of its simple implementation and low operation cost. The analysis of OL/TPC parameters is essential for efficient resource management from the cellular operator's viewpoint. In this work, the impact of the OL/TPC parameters is investigated for homogeneous small cells and heterogeneous small-cell/macrocell network environments. A mathematical model is derived to compute the transmit power at the user equipment, the received power at the eNodeB, the interference in the network, and the received signal-to-interference ratio. Using the analytical platform, the effects of the OL/TPC parameters on the system performance in LTE networks are investigated. Numerical results show that, in order to achieve the best performance, it is appropriate to choose ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in a homogenous small-cell network. Further, the selections of ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in the small cells and ${\alpha}_{macro}=0.8$ and $P_{o-macro}=-100dBm$ in the macrocells seem to be suitable for heterogeneous network deployment.

Analysis of Evaluator's Role and Capability for Institution Accreditation Evaluation of NCS-based Vocational Competency Development Training (NCS 기반 직업능력개발훈련 기관인증평가를 위한 평가자의 역할과 역량 분석)

  • Park, Ji-Young;Lee, Hee-Su
    • Journal of vocational education research
    • /
    • v.35 no.4
    • /
    • pp.131-153
    • /
    • 2016
  • The purpose of this study was to derive evaluator's role and capability for institution accreditation evaluation of NCS-based vocational competency development training. This study attempted to explore in various ways evaluator's minute roles using Delphi method, and to derive knowledge, skill, attitude and integrity needed to verify the validity. To the end, this study conducted the Delphi research for over three rounds by selecting education training professionals and review evaluation professions as professional panels. From the results, roles of evaluators were defined as the total eight items including operator, moderator-mediator, cooperator, analyzer, verifier, institution evaluator, institution consultant, and learner, and the derived capabilities with respect to each role were 25 items in total. The area of knowledge included four items of capabilities such as HRD knowledge, NCS knowledge, knowledge of vocational competency development training, and knowledge of training institution accreditation evaluation, and the area of skill comprised fourteen items of capabilities such as conflict management ability, interpersonal relation ability, word processing ability, problem-solving ability, analysis ability, pre-preparation ability, time management ability, decision making ability, information comprehension and utilization ability, comprehensive thinking ability, understanding ability of vocational competency development training institutions, communication ability, feedback ability, and core understanding ability. The area of attitude was summarized with the seven items in total including subjectivity and fairness, service mind, sense of calling, ethics, self-development, responsibility, and teamwork. The knowledge, skill and attitude derived from the results of this study may be utilized to design and provide education programs conducive to qualitative and systematic accreditation and assessment to evaluators equipped with essential prerequisites. It is finally expected that this study will be helpful for designing module education programs by ability and for managing evaluator's quality in order to perform pre-service education and in-service education according to evaluator's experience and role.