• Title/Summary/Keyword: Escherichia coli expression system

Search Result 228, Processing Time 0.027 seconds

Cloning, Expression, and Nucleotide Sequencing of the Gene Encoding Glucose Permease of Phosphotransferase System from Brevibacterium ammoniagenes

  • Yoon, Ki-Hong;Yim, Hyouk;Jung, Kyung-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.214-221
    • /
    • 1998
  • A Brevibacterium ammoniagenes gene coding for glucose/mannose-specific enzyme II ($EII^{Glc}$) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing an Escherichia coli mutation affecting a ptsG gene, and the complete DNA nucleotide sequence was determined. The cloned gene was identified to be a ptsG, which enables the E. coli transportment to use glucose more efficiently than mannose as the sole carbon source in an M9 minimal medium. The ptsG gene of B. ammoniagenes consists of an open reading frame of 1,983 nucleotides putatively encoding a polypeptide of 661 amino acid residues and a TAA stop codon. The deduced amino acid sequence of the B. ammoniagenes $EII^{Glc}$ shows, at $46\%$, the highest degree of sequence similarity with the Corynebacterium glutamicum EII specific for both glucose and mannose. In addition, the $EII^{Glc}$ shares approximately $30\%$ sequence similarities with sucrose-specific and ${\beta}$-glucoside-specific EIIs of the several bacteria belonging to the glucose-PTS class. The 161-amino-acid C-terminal sequence of $EII^{Glc}$ is also similar to that of E. coli enzyme $IIA^{Glc}$, specific for glucose ($EIIA^{Glc}$). The B. ammoniagenes $EII^{Glc}$ consists of three domains; a hydrophobic region (EIIC) and two hydrophilic regions (EIIA, EIIB). The arrangement of structural domains, IIBCA, of the $EII^{Glc}$ is identical to those of EIIs specific for sucrose or ${\beta}$-glucoside. While the domain IIA was removed from the B. ammoniagenes $EII^{Glc}$ the remaining domains IIBC were found to restore the glucose and mannose-utilizing capacity of E. coli mutant lacking $EII^{Glc}$ activity with $EIIA^{Glc}$ of the E. coli mutant. $EII^{Glc}$ contains a histidine residue and a cysteine residue which are putative phosphorylation sites for the protein.

  • PDF

Expression of Human Immunodeficiency Virus Type 1 Gag Protein in Escherichia coli

  • Park, Weon-Sang
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.556-563
    • /
    • 1999
  • Presence of antibody to the capsid protein p24 is the main diagnostic criterion, since this reflects reliable antibody response to HIV infection. However, it takes about 6-8 weeks for antibody production after infection and people who are infected but antibodies are not produced yet are classified as seronegative. Therefore, there is a strong need for an improved diagnostic method for better health security. As a first step for developing such an improved diagnostic system, gag protein of human immunodificiency virus type 1 was expressed in E. coli DH5$\alpha$. The gag fragment of HIV-1 (including a portion of p17 and whole p24) was amplified by polymerase chain reaction (PCR) and BamH I/EcoR I sites were created during PCR. The amplified DNA fragment was cleaved with BamH I/EcoR I and was subcloned into the GEX-2T vector which had been digested with BamHI/EcoRI, resulting gene fusion with gst gene of pGEX-2T. The recombinant DNA was transferred into E. coli DH5$\alpha$. The transformed bacteria were grown at 37$^{\circ}C$ for 3h and protein expression was induced with 0.1mM IPTG at $25^{\circ}C$ for 3h. Recombinant gag protein or GST-gag fusion protein was purified with glutathione-sepharose 4B bead and migrated as a single band when analyzed by 10% polyacrylamide gel. These proteins were confirmed by immunoblotting with anti-GST goat sera or Korean AIDS patients sera. The results of this study establish the expression and single step pulification of HIV-1 gag protein which can specifically bind with Korean AIDS patients sera.

  • PDF

Construction of Xylose-Inducible Expression Vector Using xylA Promoter of Escherichia coli (대장균 xylA 프로모터를 이용한 xylose 유도성 발현벡터의 구축)

  • Kim, Hyun-Ho;So, Jai-Hyun;Rhee, In-Koo
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • xylA promoter is a major promoter in xylose operon of Escherichia coli. xylA promoter is sufficient as the promoter for the construction of new expression vector because this promoter was tightly controlled and induced by the addition of xylose. For the construction of xylose-inducible expression vector, 600 bp of xylA promoter was ligated between AatII and HindIII of pUC18, named pXA600. In order to investigate the effect of XylR protein encoded by xylR gene on the xylA promoter, 1,988 bp of xylR gene including its promoter was ligated into downstream of multiple cloning site to the opposite direction of xylA promoter in pXA600, named pXAR600. For the measurement of expression level, 3,048 bp of lacZ structural gene was fused into xylA promoter in both plasmids pXA600 and pXAR600 as a reporter gene, named pXA600-lacZ and pXAR600-lacZ, respectively. The $\beta$-galactosidase activity of pXA600-lacZ and pXAR600-lacZ in E. coli JM109 was determined to be 1,641 and 2,304 unit by the induction with xylose in LB medium, respectively. The $\beta$-galactosidase activity of pXAR600-lacZ/JM109 was about 1.4 times higher by the induction with xylose than that of pXA600-lacZ/JM109. The $\beta$-galactosidase activity of pXA600-lacZ and pXAR600-lacZ in E.coli JM109 showed 6,282 and 9,320 unit by the induction with xylose in DM minimal medium, respectively. A regulator, xylR protein works as an activator for the gene expression by the addition of xylose in the xylose-inducible vectors because the level of gene expression in pXA600 is increased by the insertion of xylR gene into the same vector. The xynA gene of Streptomyces thermocyaneoviolaceus cloned in pXA600 and pXAR600 was successfully expressed in E. coli BLR(DE3). As a result, plasmids pXA600 and pXAR600 using xylA promoter are sufficient as new expression system to produce a foreign protein in E. coli.

Validation of protein refolding via 1-dimensional 1H-15N heteronuclear single quantum correlation experiments

  • Kim, Boram;Choi, Joonhyeok;Ryu, Kyoung-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.4
    • /
    • pp.104-107
    • /
    • 2019
  • Many proteins are expressed as an insoluble form during the production using Escherichia coli (E. coli) system. Although various methods are applied to increase their amounts of soluble expression, refolding is the only feasible way to obtain a target protein in some cases. Moreover, protein NMR experiments require 13C/15N-labeled proteins that can only be obtained from E. coli systems in terms of cost and technical difficulty. The finding of appropriate refolding conditions for a target protein is a time-consuming process. In particular, it is very difficult to determine whether the refolded protein has a native structure, when a target protein has no enzymatic activity and its refolding yield is very low. Here, we showed that 1-dimensional 1H-15N heteronuclear single quantum correlation (1D 1H-15N HSQC) experiment can be efficiently used to screen an optimal condition for the refolding of a target protein by monitoring both the structure and concentration of the refolded protein.

Effects of different target sites on antisense RNA-mediated regulation of gene expression

  • Park, Hongmarn;Yoon, Yeongseong;Suk, Shinae;Lee, Ji Young;Lee, Younghoon
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.619-624
    • /
    • 2014
  • Antisense RNA is a type of noncoding RNA (ncRNA) that binds to complementary mRNA sequences and induces gene repression by inhibiting translation or degrading mRNA. Recently, several small ncRNAs (sRNAs) have been identified in Escherichia coli that act as antisense RNA mainly via base pairing with mRNA. The base pairing predominantly leads to gene repression, and in some cases, gene activation. In the current study, we examined how the location of target sites affects sRNA-mediated gene regulation. An efficient antisense RNA expression system was developed, and the effects of antisense RNAs on various target sites in a model mRNA were examined. The target sites of antisense RNAs suppressing gene expression were identified, not only in the translation initiation region (TIR) of mRNA, but also at the junction between the coding region and 3' untranslated region. Surprisingly, an antisense RNA recognizing the upstream region of TIR enhanced gene expression through increasing mRNA stability.

Site-Specific Recombination by the Integrase MJ1 on Mammalian Cell (동물 세포 내에서 MJ1 인티그라제에 의한 부위 특이적 재조합)

  • Kim, Hye-Young;Yoon, Bo-Hyun;Chang, Hyo-Ihl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2011
  • Integrase MJ1 from the bacteriophage ${\Phi}FC1$ carries out recombination between two DNA sequences (the phage attachment site, attP and the bacterial attachment site, attB) in NIH3T3 mouse cells. In this study, the integration vector containing attP, attB and the integrase gene MJ, was constructed. The integration mediated by integrase MJ1 in Escherichia coli led to excision of LacZ. Therefore, the frequency of integration was measured by the counting of the white colony, which is detectable on X-Gal plates. The extrachromosomal integration in NIH3T3 mouse cells was monitored by the expression of the green fluorescent protein (GFP) as a reporter. To demonstrate integration mediated integrase MJ1 in NIH3T3 cells, vectors containing attP and attB were co-transfected into NIH3T3 cells. The integration was confirmed by fluorescent microscopy. The expression of GFP was induced in NIH3T3 cells expressing MJ1 without accessory factors. By contrast, the excision mediated by the MJ1 between attR and attL had no effect on the expression of GFP. These results suggest that integrase MJ1 may enable a variety of genomic modifications for research and therapeutic purposes in higher living cells.

Cloning and Expression of the Cathepsin F-like Cysteine Protease Gene in Escherichia coli and Its Characterization

  • Joo, Han-Seung;Koo, Kwang-Bon;Park, Kyun-In;Bae, Song-Hwan;Yun, Jong-Won;Chang, Chung-Soon;Choi, Jang-Won
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.158-167
    • /
    • 2007
  • In this study, we have cloned a novel cDNA encoding for a papain-family cysteine protease from the Uni-ZAP XR cDNA library of the polychaete, Periserrula leucophryna. This gene was expressed in Escherichia coli using the T7 promoter system, and the protease was characterized after partial purification. First, the partial DNA fragment (498 bp) was amplified from the total RNA via RT-PCR using degenerated primers derived from the conserved region of cysteine protease. The full-length cDNA of cysteine protease (PLCP) was prepared via the screening of the Uni-ZAP XR cDNA library using the $^{32}P-labeled$ partial DNA fragment. As a result, the PLCP gene was determined to consist of a 2591 bp nucleotide sequence (CDS: 173-1024 bp) which encodes for a 283-amino acid polypeptide, which is itself composed of an 59-residue signal sequence, a 6-residue propeptide, a 218-residue mature protein, and a long 3'-noncoding region encompassing 1564 bp. The predicted molecular weights of the preproprotein and the mature protein were calculated as 31.8 kDa and 25 kDa, respectively. The results of sequence analysis and alignment revealed a significant degree of sequence similarity with other eukaryotic cysteine proteases, including the conserved catalytic triad of the $Cys^{90},\;His^{226},\;and\;Asn^{250}$ residues which characterize the C1 family of papain-like cysteine protease. The nucleotide and amino acid sequences of the novel gene were deposited into the GenBank database under the accession numbers, AY390282 and AAR27011, respectively. The results of Northern blot analysis revealed the 2.5 kb size of the transcript and ubiquitous expression throughout the entirety of the body, head, gut, and skin, which suggested that the PLCP may be grouped within the cathepsin F-like proteases. The region encoding for the mature form of the protease was then subcloned into the pT7-7 expression vector following PCR amplification using the designed primers, including the initiation and termination codons. The recombinant cysteine proteases were generated in a range of 6.3 % to 12.5 % of the total cell proteins in the E. coli BL21(DE3) strain for 8 transformants. The results of SDS-PAGE and Western blot analysis indicated that a cysteine protease of approximately 25 kDa (mature form) was generated. The optimal pH and temperature of the enzyme were determined to be approximately 9.5 and $35^{\circ}C$, respectively, thereby indicating that the cysteine protease is a member of the alkaline protease group. The evaluation of substrate specificity indicated that the purified protease was more active towards Arg-X or Lys-X and did not efficiently cleave the substrates with non-polar amino acids at the P1 site. The PLCP evidenced fibrinolytic activity on the plasminogen-free fibrin plate test.

Co-expression of CdtA and CdtC subunits of cytolethal distending toxin from Aggregatibacter actinomycetemcomitans

  • Lee, Seung-Jae;Lee, Kyung-Yeol;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.231-237
    • /
    • 2009
  • Purpose: Cytolethal distending toxin (CDT) is a family of heat-labile cytotoxins produced by several gram-negative mucosa-associated pathogens, including Aggregatibacter actinomycetemcomitans. CDT is well known to be capable of inducing growth arrest, morphological alterations, and eventually death in various cells. CDT belongs to a tripartite $AB_2$ toxin (CdtB: the enzymatic A subunit; CdtA and CdtC: the heterodimeric B subunit). Previous studies proposed that CdtA and CdtC together bind to a cell surface receptor and glycolipids act as a receptor for A. actinomycetemcomitans CDT (AaCDT). In this study, recombinant CdtA and CdtC proteins of AaCDT were co-expressed in a bacterial expression system and tested for their affinity for $GM_1$ ganglioside. Methods: The genes for CdtA and CdtC from A. actinomycetemcomitans Y4 were utilized to construct the expression vectors, pRSET-cdtA and pET28a-cdtC. Both CdtA and CdtC proteins were expressed in Escherichia coli BL21(DE3) and then purified using hexahistidine (His6) tag. The identity of purified protein was confirmed by anti-His6 antibody and monoclonal anti-CdtA antibody. Furthermore, the affinity of recombinant protein to $GM_1$ ganglioside was checked through ELISA. Results: Recombinant CdtA and CdtC proteins were expressed as soluble proteins and reacted to anti-His6 and monoclonal anti-CdtA antibodies. ELISA revealed that purified soluble CdtA-CdtC protein bound to $GM_1$ ganglioside, while CdtA alone did not. Conclusions: Co-expression of CdtA and CdtC proteins enhanced the solubility of the proteins in E. coli, leading to convenient preparation of active CdtA-CdtC, a critical material for the study of AaCDT pathogenesis.

Optimalization of ELISA using Recombinant p27 Protein of SIV for Detection of Anti-SIV (SIV의 p27 재조합 단백질을 이용한 SIV 항체 검출을 위한 ELISA의 최적 조건)

  • Kim, Eun-ok;Kim, Eun;Oh, Yoon-i;Shin, Kwang-soon;Kim, Hyun-soo;Kim, Chul-joong
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.101-108
    • /
    • 2002
  • The p27 coding region of the SIVmac239 isolate was amplified by PCR and cloned into an expression vector, pMAL-cri, which expressed high levels of the p27 protein from Escherichia coli. The purified p27 protein was used for detection of anti-SIV antibodies with the sera from 11 macaques and 21 marmosets by immunoblot assay of which one macaque was suspicious for the SIV infection. The optimum conditions of ELISA was studied by the check board system with the recombinant purified p27 protein. For the plate coating, 200ng/well of the purified p27 was satisfactory. The conjugate was diluted 1:1000. The sera from the 32 monkeys were negative for the anti-SIV by ELISA.

Molecular Cloning and Expression of the Novel Attacin-Like Antibacterial Protein Gene Isolated from the Bombyx mori (집누에로부터 새로운 attactin 유산 항세균성 펩타이드 유전자의 분리 및 발현)

  • 윤은영;김상현;강석우;진병래;김근영;김호락;한명세;강석권
    • Korean journal of applied entomology
    • /
    • v.36 no.4
    • /
    • pp.331-340
    • /
    • 1997
  • Hyalophora cecropia attacin-like antibacterial gene was isolated from Bombyx mori induced with nonpathogenic bacteria. It was expressed in Spodopfera frugiperda 9 (Sf9 cells using baculovirus expression vector system (BEVS), and examined its antibacterial activity. With a cDNA library constructed from fifthinstar B. mori injected with Escherichia coli(4 X IOhcellsllarva), differential screening was performed using naive and induced mRNA probes. BmInc6 clone was screened by partial nucleotide sequence and GenBank database analysis. A complete nucleotide sequence of Bmlnc6 cDNA was determined (GenBank, AF005384). Its insert size was 852 bp and had open reading frame that started translation at position 35 and stopped at 679. And its putative polyadenylational signal existed at 812 bp. The number of amino acid deduced from Bmlnc6 cDNA was 214 and hydropathy analysis showed that this peptide was hydrophilic. This peptide deduced by BmInc6 was named nuecin. When the nuecin gene was expressed in Sf9 cells using BEVS, about 950 bp of the transcripts was detected. In addition, SDS-PAGE analysis showed that the molecular weights of intracellular expressed protein and the mature protein secreted to culture media were approximately 23 and 20 kDa, respectively. The antibacterial activity of nuecin against E. coli and Bacillus subtilis was significantly high, demonstrating that nuecin had a wider antibacterial spectrum with gram negative and positive bacteria than attacin.

  • PDF