DOI QR코드

DOI QR Code

Validation of protein refolding via 1-dimensional 1H-15N heteronuclear single quantum correlation experiments

  • Kim, Boram (Research center for bioconvergence analysis, Korea Basic Science Institute Ochang center) ;
  • Choi, Joonhyeok (Research center for bioconvergence analysis, Korea Basic Science Institute Ochang center) ;
  • Ryu, Kyoung-Seok (Research center for bioconvergence analysis, Korea Basic Science Institute Ochang center)
  • Received : 2019.12.17
  • Accepted : 2019.12.20
  • Published : 2019.12.20

Abstract

Many proteins are expressed as an insoluble form during the production using Escherichia coli (E. coli) system. Although various methods are applied to increase their amounts of soluble expression, refolding is the only feasible way to obtain a target protein in some cases. Moreover, protein NMR experiments require 13C/15N-labeled proteins that can only be obtained from E. coli systems in terms of cost and technical difficulty. The finding of appropriate refolding conditions for a target protein is a time-consuming process. In particular, it is very difficult to determine whether the refolded protein has a native structure, when a target protein has no enzymatic activity and its refolding yield is very low. Here, we showed that 1-dimensional 1H-15N heteronuclear single quantum correlation (1D 1H-15N HSQC) experiment can be efficiently used to screen an optimal condition for the refolding of a target protein by monitoring both the structure and concentration of the refolded protein.

Keywords

References

  1. H. Yamaguchi and M. Miyazaki, Biomolecules 4, 235 (2014) https://doi.org/10.3390/biom4010235
  2. A. S. Rathore, P. Bade, V. Joshi, M. Pathak, and S. K. Pattanayek, J. Chem. Technol. Biotechnol. 88, 1794 (2013) https://doi.org/10.1002/jctb.4152
  3. M. K. Eiberle and A. Jungbauer, J. Biotechnol. 5, 547 (2010) https://doi.org/10.1002/biot.201000001
  4. C. A. Thomson, M. Olson, L. M. Jackson, and J. W. Schrader, PloS One 7, e49891 (2012) https://doi.org/10.1371/journal.pone.0049891
  5. S. Yamaguchi, E. Yamamoto, T. Mannen, T. Nagamune, and T. Nagamune, J. Biotechnol. 8, 17 (2013) https://doi.org/10.1002/biot.201200025
  6. J. H. Ha, Y. Eo, H. C. Ahn, and K. S. Ryu, Acta Crystallogr. F 73, 253 (2017) https://doi.org/10.1107/S2053230X1700468X
  7. S. Wu, Z. Li, D. V. Gnatenko, B. Zhang, L. Zhao, L. E. Malone, N. Markova, T. J. Mantle, N. Nesbitt, and W. F. Bahou, Blood 128, 699 (2016)
  8. N. Paukovich, M. Xue, J. R. Elder, J. S. Redzic, A. Blue, H. Pike, B. G. Miller, T. M. Pitts, D. D. Pollock, K. Hansen, A. D'Alessandro, and E. Z. Eisenmesser, J. Mol. Biol. 430, 3234 (2018) https://doi.org/10.1016/j.jmb.2018.06.015
  9. J. Kim, D. Choi, C. Park, and K. S. Ryu, J. Korean Magn. Reson. Soc. 19, 112 (2005) https://doi.org/10.6564/JKMRS.2015.19.3.112
  10. W. T. Chu, N. M. Nesbitt, D. V. Gnatenko, Z. Li, B. Zhang, M. A. Seeliger, S. Browne, T. J. Mantle, W. F. Bahou, and J. Wang, Chemistry 23, 1891 (2017) https://doi.org/10.1002/chem.201604517
  11. J. Buchner and R. Rudolph, Biotechnology 9, 15 (1991)