• 제목/요약/키워드: Error-BP

검색결과 104건 처리시간 0.028초

공통현 기반 삼변측량 보정 알고리즘 및 복합 측위 시스템 개발 (Common Chord based Trilateration Correction Algorithm and Hybrid Positioning System Development)

  • 이정훈;박부곤;김용길;최지훈;김정태;배경훈
    • 한국정보통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.448-458
    • /
    • 2020
  • 공통현을 이용한 삼변측량 기반 실내 측위의 경우 각 AP로부터 이동체까지의 거리를 구하여, 각 AP별로 해당 거리를 반지름으로 하는 원을 이용하여 원들의 둘레가 교차 되는 접점들을 이용하여 이동체의 위치를 예상한다. 거리 오차로 인하여 원 간의 접점이 생성되지 않는 경우, 위치 예상에 실패하게 된다. 본 논문에서는 이를 개선하기 위한 알고리즘을 제안하였는데, 거리에 따라 반지름의 크기에 비례한 값을 임의로 추가하여 강제로 접점을 생성하여 예상 위치를 생성한 뒤, 해당 원의 반지름에 추가된 임의 값과 원점으로부터, 거리에 따른 보정을 하였다. 기존 삼변측량의 거리 오차로 인한 좌표 생성 실패 비율과 좌표 측위 오차를 최소화하는 발전된 알고리즘을 제안하고 시스템을 제작하여 성능을 분석하였다.

MOS 센서어레이를 이용한 냄새 분류 및 농도추정을 위한 LM-BP 알고리즘 응용 (LM-BP algorithm application for odour classification and concentration prediction using MOS sensor array)

  • 최찬석;변형기;김정도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.210-210
    • /
    • 2000
  • In this paper, we have investigated the properties of multi-layer perceptron (MLP) for odour patterns classification and concentration estimation simultaneously. When the MLP may be has a fast convergence speed with small error and excellent mapping ability for classification, it can be possible to use for classification and concentration prediction of volatile chemicals simultaneously. However, the conventional MLP, which is back-Propagation of error based on the steepest descent method, was difficult to use for odour classification and concentration estimation simultaneously, because it is slow to converge and may fall into the local minimum. We adapted the Levenberg-Marquardt(LM) algorithm [4,5] having advantages both the steepest descent method and Gauss-Newton method instead of the conventional steepest descent method for the simultaneous classification and concentration estimation of odours. And, We designed the artificial odour sensing system(Electronic Nose) and applied LM-BP algorithm for classification and concentration prediction of VOC gases.

  • PDF

PTT를 이용한 자전거 운동 중 지속적인 혈압의 예측 (Continuous Blood Pressure Prediction Using PTT During Exercise)

  • 김철승;문기욱;권정훈;엄광문
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.370-375
    • /
    • 2006
  • The purpose of this work is to predict the systolic blood pressure (BP) during exercise from pulse transit time (PTT) for warning of possible danger. PTT was calculated as the time between R-peak of ECG and the peak of differential photoplethysmograph (PPG). For the PTT-BP model, we used regress equations from previous studies and 3 kinds of new models combining linear and nonlinear regress equation. The model parameters were estimated with the data measured under low to middle intensity exercise, and then was tested with the data measured under high intensity exercise. Predicted BP values after high intensity exercise were compared with those measured by cuff-type sphygmomanometer. The results showed that the error between measured and predicted values were acceptable for the monitoring BP. We tested PTT-BP models 1 month after the identification without further calibration. Models could predict the BP and the errors between measured and predicted BP were about 5mmHg. The suggested system is expected to be helpful in recognizing any danger during exercise.

PTT를 이용한 운동 중 혈압 예측을 위한 Local과 Global Fitting의 비교 (Comparison of Local and Global Fitting for Exercise BP Estimation Using PTT)

  • 김철승;문기욱;엄광문
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2265-2267
    • /
    • 2007
  • The purpose of this work is to compare the local fitting and global fitting approaches while applying regression model to the PTT-BP data for the prediction of exercise blood pressures. We used linear and nonlinear regression models to represent the PTT-BP relationship during exercise. PTT-BP data were acquired both under resting state and also after cycling exercise with several load conditions. PTT was calculated as the time between R-peak of ECG and the peak of differential photo-plethysmogram. For the identification of the regression models, we used local fitting which used only the resting state data and global fitting which used the whole region of data including exercise BP. The results showed that the global fitting was superior to the local fitting in terms of the coefficient of determination and the RMS (root mean square) error between the experimental and estimated BP. The nonlinear regression model which used global fitting showed slightly better performance than the linear one (no significant difference). We confirmed that the wide-range of data is required for the regression model to appropriately predict the exercise BP.

A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM

  • Ding, Min-jie;Zhang, Shao-zhong;Zhong, Hai-dong;Wu, Yao-hui;Zhang, Liang-bin
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.305-319
    • /
    • 2019
  • The prediction of the sum of container is very important in the field of container transport. Many influencing factors can affect the prediction results. These factors are usually composed of many variables, whose composition is often very complex. In this paper, we use gray relational analysis to set up a proper forecast index system for the prediction of the sum of containers in foreign trade. To address the issue of the low accuracy of the traditional prediction models and the problem of the difficulty of fully considering all the factors and other issues, this paper puts forward a prediction model which is combined with a back-propagation (BP) neural networks and the support vector machine (SVM). First, it gives the prediction with the data normalized by the BP neural network and generates a preliminary forecast data. Second, it employs SVM for the residual correction calculation for the results based on the preliminary data. The results of practical examples show that the overall relative error of the combined prediction model is no more than 1.5%, which is less than the relative error of the single prediction models. It is hoped that the research can provide a useful reference for the prediction of the sum of container and related studies.

Estimating BP Decoding Performance of Moderate-Length Irregular LDPC Codes with Sphere Bounds

  • 정규혁
    • 한국통신학회논문지
    • /
    • 제35권7C호
    • /
    • pp.594-597
    • /
    • 2010
  • This paper estimates belief-propagation (BP) decoding performance of moderate-length irregular low-density parity-check (LDPC) codes with sphere bounds. We note that for moderate-length($10^3{\leq}N{\leq}4\times10^3$) irregular LDPC codes, BP decoding performance, which is much worse than maximum likelihood (ML) decoding performance, is well matched with one of loose upper bounds, i.e., sphere bounds. We introduce the sphere bounding technique for particular codes, not average bounds. The sphere bounding estimation technique is validated by simulation results. It is also shown that sphere bounds and BP decoding performance of irregular LDPC codes are very close at bit-error-rates (BERs) $P_b$ of practical importance($10^{-5}{\leq}P_b{\leq}10^{-4}$).

다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어 (Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation)

  • 오세영;류연식
    • 대한전기학회논문지
    • /
    • 제39권12호
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

동맥압 형태변화에 따른 혈압 보정에 관한 연구 (A Study on the Compensation of Blood Pressure Caused by the Change of Arterial Pressure Shape)

  • 임성수;박광리;이경중
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.177-178
    • /
    • 1998
  • This paper is a study on compensation for error in estimation of mean pressure according to the change of arterial pressure shape. Because arterial pressure shape affects the mean pressure and blood volume which are important factors for measurement of blood pressure(BP), change of arterial pressure shape cause BP measurement error. In order to solve this problem, we add the compensation function C($\alpha$), depending on arterial pressure shape, to mathematical oscillometric model. Consequently, we could accurately estimate the blood pressure by correcting of the error using compensation function.

  • PDF

휴대용 및 웨어러블 측정기를 위한 ECG와 PPG 신호를 활용한 합성곱 신경망 알고리즘 기반의 비가압식 혈압 추정 방법 (Cuffless Blood Pressure Estimation Based on a Convolutional Neural Network using PPG and ECG Signals for Portable or Wearable Blood Pressure Devices)

  • 조진우;최아영
    • 한국산업정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.1-10
    • /
    • 2020
  • 본 논문에서는 시계열 심전도 (Electrocardiogram: ECG) 및 광전용맥파 측정센서 (Photoplethysmography: PPG)을 이용하여 혈압을 추정하는 알고리즘을 제안한다. 혈압 (Blood pressure: BP)을 추정하기 위해 주기적 입력 신호를 생성하고 차동 및 임계값 방법에 따라 잡음을 제거한 다음 합성곱 신경망 알고리즘을 기반으로 하여 수축기 혈압과 이완기 혈압을 예측한다. 본 논문에서 사용된 데이터는 MIMIC 데이터베이스에서 총 3.1GB의 49명의 환자 데이터를 사용하였다. 실험결과 수축기 혈압의 평균 제곱근 오차는 5.80mmHg, 이완기 혈압의 예측 오차는 2.78mmHg을 나타내었다. 또한, 영국 고혈압 협회가 제안한 혈압계 평가 방법을 적용하였을 때, 최고 성능인 등급 A를 만족함을 확인할 수 있었다.

Belief Propagation를 적용한 스테레오 정합과 영역 기반 정합 알고리즘의 정확성 비교 (Compare the accuracy of stereo matching using belief propagation and area-based matching)

  • 박종일;김동한;엄낙웅;이광엽
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.119-122
    • /
    • 2011
  • 최근 활발히 연구되고 있는 스테레오 비전의 BP 알고리즘은 시차 정보 추출에 우수한 성능을 보인다. 본 논문에서는 Belief Propagation(BP) 알고리즘과 영역 기반 정합 알고리즘을 이용하여 스테레오 이미지로부터 시차 지도를 추출하고, 두 알고리즘을 Middlebury 웹사이트에서 제공하는 2쌍의 스테레오 이미지를 사용하여 비교함으로써, BP 알고리즘을 사용한 정합 알고리즘의 정확성이 높음을 이론적으로 증명한다. 실험 결과 시차 지도의 오류율은 52.3%에서 2.3%로 감소하였다.

  • PDF