• Title/Summary/Keyword: Error function

Search Result 3,405, Processing Time 0.032 seconds

Experimental Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수를 이용한 유정압테이블 운동정밀도 해석법의 실험적 검증)

  • Oh, Yoon-Jin;Park, Chun-Hong;Lee, Chan-Hong;Hong, Joon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.64-71
    • /
    • 2002
  • A new model utilizing a transfer function was proposed in the previous paper fur analizing motion errors of hydrostatic tables. Validity of the proposed method was theoretically verified as the calculated motion errors were compared with the results by conventional multi pad method. In this paper, relationship between form error of rail and motion errors of hydrostatic table is analized theoretically in order to comprehand so-called ‘averaging effect of oil film’. Experiments on the motion errors of hydrostatic table is conducted with 3 different rails, and the results are compared with the results calculated by Transfer Function Method. The results show good agreement. From the results, it is verified that TFM is very effective to analize the motion errors of hydrostatic table.

Experimental Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수를 이용한 유정압테이블 운동정밀도 해석법의 실험적 검증)

  • 박천흥;오윤진;이후상;홍준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.454-458
    • /
    • 2001
  • A new model utilizing a transfer function was proposed in the previous paper for analizing motion errors of hydrostatic tables. Validity of the proposed method was theoretically verified as the calculated motion errors were compared with the results by conventional multi pad method. In this paper, relationship between form error of rail and motion errors of hydrostatic table is analized theoretically in order to comprehand so-called 'averaging effect of oil film'. Experiments on the motion errors of hydrostatic table is conducted with 3 different rails, and the results are compared with the results calculated by Transfer Function Method. The results show good agreement. From the results, it is verified that TFM is very effective to analize the motion errors of hydrostatic table.

  • PDF

Active Control of Optimization Process in Lens Design by Using Lagrange's Undetermined Multipliers (광학설계의 최적화과정에서 Lagrange 부정승수를 이용한 능동적 제어)

  • 조용주;이종웅
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.40-41
    • /
    • 2000
  • 광학설계의 최적화에서는 최소자승법과 감쇠최소자승법이 주로 사용되고 있다. 최소자승법은 error의 제곱의 합을 최소화하는 방법으로, 이 방법은 최적점 부근에서의 불안정성이 발생하는 문제점이 있다. 감쇠최소자자승법은 최소자승법에 적절한 감쇠항을 부가함으로써 최적점 부근에서의 불안정성을 줄여주고 있다. 본 연구에서는 광학설계의 제한조건을 Lagrange 부정승수$^{(1)}$ 를 사용하여 감쇠최소자승법의 정규방정식에 결합하여 제한조건을 유지하면서 merit function을 줄이는 방법에 대하여 연구하였다. 이 방법에서는 제한조건이 merit function의 error 함수보다 우선적으로 보정되며, 이를 이용하여 매 iteration 마다 merit function에서 절대값이 큰 error를 감쇠최소자승법의 정규방정식에서 제거하고 이 보정조건을 제한조건에 추가함으로서 다른 error항 보다 우선적으로 보정되도록 하였다. 이 때 이 error를 한번에 보정하는 경우에는 merit function의 진동이 심하고 광학계가 사용불가능한 형태로 변화하는 경우가 많아 적절한 target ratio를 설정하여 반복과정을 통하여 점진적으로 보정되도록 하였으며, 이를 통하여 최적화의 안정성을 개선할 수 있었다. (중략)

  • PDF

High Performance CNC Control Using a New Discrete-Time Variable Structure Control Method (새로운 이산시간 가변구조 제어방법을 이용한 CNC의 고성능 제어)

  • Oh, Seung-Hyun;Kim, Jung-ho;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1053-1060
    • /
    • 2000
  • In this paper, a discrete-time variable structure control method using recursively defined switching function and a decoupled variable structure disturbance compensator is used to achieve high performance circular motion control of a CNC machining center. The discrete-time variable structure control with the decoupled disturbance compensator method developed in this paper uses a recursive switching function defined as the sum of the current tracking error vector and the previous value of the switching function multiplied by a positive constant less than one. This recursive switching function provides much improved performance compared to the method that uses a switching function defined only as a linear combination of the current tracking error. Enhancements in tracking performance are demonstrated in the circular motion control using a CNC milling machine.

  • PDF

Improvement of Motion Accuracy Using Transfer Function in Linear Motion Bearing Guide (전달함수를 이용한 직선베어링 안내면의 운동정밀도 향상)

  • Kim, Kyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.77-85
    • /
    • 2002
  • An analysis method which calculates corrective machining information for improving the motion accuracy of linear motion guide Is proposed in this paper. The method is composed of two algorithms. One is the algorithm fur prediction of the motion errors from rail form error. The other is the algorithm for prediction of rail form error from the motion errors of table. Transfer function is utilized in each algorithm, which represents the ratio of bearing reaction force variation to unit magnitude of spatial frequencies of raid from error. As the corrective machining information is acquired from the measured motion errors of table, the method has a merit not to measure rail form error directly. Validity of the method is verified both theoretically and experimentally. By applying the method, linear motion error of test equipment is reduced from 5.97$\mu$m to 0.58$\mu$m, and reduced from 32.78arcsec to 6.21 arcsec in case of angular motion error. From the results, it is confirmed that the method is very effective to improve the motion accuracy of linear motion guide.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

Contour Plots of Objective Functions for Feed-Forward Neural Networks

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.30-35
    • /
    • 2012
  • Error surfaces provide us with very important information for training of feed-forward neural networks (FNNs). In this paper, we draw the contour plots of various error or objective functions for training of FNNs. Firstly, when applying FNNs to classifications, the weakness of mean-squared error is explained with the viewpoint of error contour plot. And the classification figure of merit, mean log-square error, cross-entropy error, and n-th order extension of cross-entropy error objective functions are considered for the contour plots. Also, the recently proposed target node method is explained with the viewpoint of contour plot. Based on the contour plots, we can explain characteristics of various error or objective functions when training of FNNs proceeds.

Optimal Variable Selection in a Thermal Error Model for Real Time Error Compensation (실시간 오차 보정을 위한 열변형 오차 모델의 최적 변수 선택)

  • Hwang, Seok-Hyun;Lee, Jin-Hyeon;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.215-221
    • /
    • 1999
  • The object of the thermal error compensation system in machine tools is improving the accuracy of a machine tool through real time error compensation. The accuracy of the machine tool totally depends on the accuracy of thermal error model. A thermal error model can be obtained by appropriate combination of temperature variables. The proposed method for optimal variable selection in the thermal error model is based on correlation grouping and successive regression analysis. Collinearity matter is improved with the correlation grouping and the judgment function which minimizes residual mean square is used. The linear model is more robust against measurement noises than an engineering judgement model that includes the higher order terms of variables. The proposed method is more effective for the applications in real time error compensation because of the reduction in computational time, sufficient model accuracy, and the robustness.

  • PDF

Varying skill prameter based on error signal and its effect

  • Hidaka, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1741-1744
    • /
    • 2005
  • In this paper, we proposed an adaptive skill element based on error signal. We assume that human progress their skills of actions based on errors, then an inverse dynamic of human motion have to changes. Human controller consists from feedback element (FB) and feed forward element (FF) and their elements cooperate to control actions. Under the assumption, we vary the connection of FF and FB by error signal. We propose the index function for change of a skill parameter. From results of the numerical simulations for the varying skill parameter with index function, we consider that the position error given by our vision changes the skill element and we confirm that the position error is the one of the estimate function for the improvement in our skill.

  • PDF

Semiparametric Bayesian Estimation under Structural Measurement Error Model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.551-560
    • /
    • 2010
  • This paper considers a Bayesian approach to modeling a flexible regression function under structural measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under structural measurement error model without a semiparametric component.