• Title/Summary/Keyword: Error function

Search Result 3,401, Processing Time 0.026 seconds

The effect of fly ash/slag on the property of reactive powder mortar designed by using Fuller's ideal curve and error function

  • Hwang, C.L.;Hsieh, S.L.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.425-436
    • /
    • 2007
  • This study is mainly focused on applying Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of a reactive powder mortar (RPM), also known as reactive powder concrete (RPC), with the aid of error function, and then to study the effect of fly ash/slag on the performance of RPM. The solid particle is assumed to be spherical particles. Then, the void volume of paste ($V_{\nu}$) and the paste content with specific quality can be obtained. As conclusion, under Fuller's ideal grading curve, the amount of fly ash/slag mixture is higher than that with silica fume along due to it better filled the void within solid particle and obtains higher packing density.

Step-Size Control for Width Adaptation in Radial Basis Function Networks for Nonlinear Channel Equalization

  • Kim, Nam-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.600-604
    • /
    • 2010
  • A method of width adaptation in the radial basis function network (RBFN) using stochastic gradient (SG) algorithm is introduced. Using Taylor's expansion of error signal and differentiating the error with respect to the step-size, the optimal time-varying step-size of the width in RBFN is derived. The proposed approach to adjusting widths in RBFN achieves superior learning speed and the steady-state mean square error (MSE) performance in nonlinear channel environment. The proposed method has shown enhanced steady-state MSE performance by more than 3 dB in both nonlinear channel environments. The results confirm that controlling over step-size of the width in RBFN by the proposed algorithm can be an effective approach to enhancement of convergence speed and the steady-state value of MSE.

Fuzzy Learning Control for Multivariable Unstable System (불안정한 다변수 시스템에 대한 퍼지 학습제어)

  • 임윤규;정병묵;소범식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.808-813
    • /
    • 1999
  • A fuzzy learning method to control an unstable and multivariable system is presented in this paper, Because the multivariable system has generally a coupling effect between the inputs and outputs, it is difficult to find its modeling equation or parameters. If the system is unstable, initial condition rules are needed to make it stable because learning is nearly impossible. Therefore, this learning method uses the initial rules and introduces a cost function composed of the actual error and error-rate of each output without the modeling equation. To minimize the cost function, we experimentally got the Jacobian matrix in the operating point of the system. From the Jacobian matrix, we can find the direction of the convergence in the learning, and the optimal control rules are finally acquired when the fuzzy rules are updated by changing the portion of the errors and error rates.

  • PDF

The Comparative Study of NHPP Software Reliability Model Exponential and Log Shaped Type Hazard Function from the Perspective of Learning Effects (지수형과 로그형 위험함수 학습효과에 근거한 NHPP 소프트웨어 신뢰성장모형에 관한 비교연구)

  • Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • In this study, software products developed in the course of testing, software managers in the process of testing software test and test tools for effective learning effects perspective has been studied using the NHPP software. The finite failure nonhomogeneous Poisson process models presented and the life distribution applied exponential and log shaped type hazard function. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than autonomous errors-detected factor that is generally efficient model could be confirmed. This paper, a failure data analysis of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and coefficient of determination.

Simulation of Daily Reservoir Inflow using Objective Function Based on Storage Error (저수량 오차를 목적함수로 한 저수지 일 유입량 모의)

  • 노재경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.76-86
    • /
    • 2000
  • The objective function of reservoir storage error was suggested to simulate daily reservoir inflow. DAWAST model, UMAX, LMAX, FC,CP, CE were calibrated. Daily reservoir inflow was imulated with calibrated parameters and reservoir storage was simulated on a daily basis. The simulated results were compared with the monthly results by Gajiyama equation and ten-day results by Tank rainfall-runoff model through equal value lines and hydrographs . DAWAST model showed the best results compared with Gajiymama equation and Tank model. Especially, DAWAST model showed a good agreement in dry periods. NEW concept using objective function of storage error was believed to be satisfactory and to be applied in estimating reservoir inflow.

  • PDF

Design of the Target Estimation Filter based on Particle Filter Algorithm for the Multi-Function Radar (파티클 필터 알고리즘을 이용한 다기능레이더 표적 추적 필터 설계)

  • Moon, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.517-523
    • /
    • 2011
  • The estimation filter in radar systems must track targets' position within low tracking error. In the Multi-Function Radar(MFR), ${\alpha}-{\beta}$ filter and Kalman filter are widely used to track single or multiple targets. However, due to target maneuvering, these filters may not reduce tracking error, therefore, may lost target tracks. In this paper, a target tracking filter based on particle filtering algorithm is proposed for the MFR. The advantage of this method is that it can track targets within low tracking error while targets maneuver and reduce impoverishment of particles by the proposed resampling method. From the simulation results, the improved tracking performance is obtained by the proposed filtering algorithm.

Position Estimation of a Mobile Robot using Distance Error Weight Function (Distance Error Weight Function을 이용한 이동 로봇의 위치 추정 시스템의 설계)

  • Kho, Jee-Won;Park, Jae-Joon;Lee, Ki-Cheol;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3048-3050
    • /
    • 1999
  • This paper suggests a position estimating algorithm using mono vision system with projective geometry method. Generally, 3-D information can not be easily extracted from mono vision system which is taken by a camera at a specific point. But this defect is overcome by adopting model-based image analysis and selecting lines and points on the ground as natural landmarks. And this paper suggests a method that estimates position from many natural landmarks by distance error weight function.

  • PDF

Modeling Quantization Error using Laplacian Probability Density function (Laplacian 분포 함수를 이용한 양자화 잡음 모델링)

  • 최지은;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1957-1962
    • /
    • 2001
  • Image and video compression requires quantization error model of DCT coefficients for post processing, restoration or transcoding. Once DCT coefficients are quantized, it is impossible to recover the original distribution. We assume that the original probability density function (pdf) is the Laplacian function. We calculate the variance of the quantized variable, and estimate the variance of the DCT coefficients. We can confirm that the proposed method enhances the accuracy of the quantization error estimation.

  • PDF

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

Performance Enhancement of Algorithms based on Error Distributions under Impulsive Noise (충격성 잡음하에서 오차 분포에 기반한 알고리듬의 성능향상)

  • Kim, Namyong;Lee, Gyoo-yeong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2018
  • Euclidean distance (ED) between error distribution and Dirac delta function has been used as an efficient performance criterion in impulsive noise environmentsdue to the outlier-cutting effect of Gaussian kernel for error signal. The gradient of ED for its minimization has two components; $A_k$ for kernel function of error pairs and the other $B_k$ for kernel function of errors. In this paper, it is analyzed that the first component is to govern gathering close together error samples, and the other one $B_k$ is to conduct error-sample concentration on zero. Based upon this analysis, it is proposed to normalize $A_k$ and $B_k$ with power of inputs which are modified by kernelled error pairs or errors for the purpose of reinforcing their roles of narrowing error-gap and drawing error samples to zero. Through comparison of fluctuation of steady state MSE and value of minimum MSE in the results of simulation of multipath equalization under impulsive noise, their roles and efficiency of the proposed normalization method are verified.