• Title/Summary/Keyword: Error concealment

Search Result 156, Processing Time 0.053 seconds

Error Detection and Concealment of Transmission Error Using Watermark (워터마크를 이용한 전송 채널 에러의 검출 및 은닉)

  • 박운기;전병우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.262-271
    • /
    • 2004
  • There are channel errors when video data are transmitted between encoder and decoder. These channel errors would make decoded image incorrect, so it is very important to detect and recover channel errors. This paper proposes a method of error detection and recovery by hiding specific information into video bitstream using fragile watermark and checking it later. The proposed method requires no additional bits into compressed bitstream since it embeds a user-specific data pattern in the least significant bits of LEVELs in VLC codewords. The decoder can extract the information to check whether the received bitstream has an error or not. We also propose to use this method to embed essential data such as motion vectors that can be used for error recovery. The proposed method can detect corrupted MBs that usually escape the conventional syntax-based error detection scheme. This proposed method is quite simple and of low complexity. So the method can be applied to multimedia communication system in low bitrate wireless channel.

A Packet-Loss Resilient Packetization and Associated Video Coding Methods for the Internet Video Transmission (인터넷 동영상 전송을 위한 패킷손실에 강인한 패킷화 및 동영상부호화 기법)

  • Yoo Kook-yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1068-1075
    • /
    • 2005
  • In this paper we propose a video coding method and associated packetization and decoding methods for error resilient transmission over the Internet. The proposed method re-organizes the input image into several mutually similar subimages. For this case, if the one of the subimage is lost in the network, the lost one is recovered by the proposed error concealment method which uses the correctly received other subimages. The performance of the proposed method is confirmed by the empirical results. The proposed method is not limited to the Internet communications but is applicable to the other packet-based networks.

Improved Error Detection Scheme Using Data Hiding in Motion Vector for H.264/AVC (움직임 벡터의 정보 숨김을 이용한 H.264/AVC의 향상된 오류 검출 방법)

  • Ko, Man-Geun;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • The compression of video data is intended for real-time transmission of band-limited channels. Compressed video bit-streams are very sensitive to transmission error. If we lose packets or receive them with errors during transmission, not only the current frame will be corrupted, but also the error will propagate to succeeding frames due to the spatio-temporal predictive coding structure of sequences. Error detection and concealment is a good approach to reduce the bad influence on the reconstructed visual quality. To increase concealment efficiency, we need to get some more accurate error detection algorithm. In this paper, We hide specific data into the motion vector difference of each macro-block, which is obtained from the procedure of inter prediction mode in H.264/AVC. Then, the location of errors can be detected easily by checking transmitted specific data in decoder. We verified that the proposed algorithm generates good performances in PSNR and subjective visual quality through the computer simulation by H.324M mobile simulation tool.

Packet Loss Concealment Algorithm Based on Speech Characteristics (음성신호의 특성을 고려한 패킷 손실 은닉 알고리즘)

  • Yoon Sung-Wan;Kang Hong-Goo;Youn Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.691-699
    • /
    • 2006
  • Despite of the in-depth effort to cantrol the variability in IP networks, quality of service (QoS) is still not guaranteed in the IP networks. Thus, it is necessary to deal with the audible artifacts caused by packet lasses. To overcame the packet loss problem, most speech coding standard have their own embedded packet loss concealment (PLC) algorithms which adapt extrapolation methods utilizing the dependency on adjacent frames. Since many low bit rate CELP coders use predictive schemes for increasing coding efficiency, however, error propagation occurs even if single packet is lost. In this paper, we propose an efficient PLC algorithm with consideration about the speech characteristics of lost frames. To design an efficient PLC algorithm, we perform several experiments on investigating the error propagation effect of lost frames of a predictive coder. And then, we summarize the impact of packet loss to the speech characteristics and analyze the importance of the encoded parameters depending on each speech classes. From the result of the experiments, we propose a new PLC algorithm that mainly focuses on reducing the error propagation time. Experimental results show that the performance is much higher than conventional extrapolation methods over various frame erasure rate (FER) conditions. Especially the difference is remarkable in high FER condition.

APP-MAC-PHY Cross-Layer Video Streaming Technique over Wireless Channels

  • Park, Jaeyoung;Kim, Jaekwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.398-400
    • /
    • 2014
  • In this letter, we propose a cross-layer technique jointly considering modulation coding schemes (MCSs) of medium access control (MAC) layer, source significance information (SSI) and error concealment unit of application (APP) layer, and channel quality information (CQI) of physical (PHY) layer. We demonstrate the improved video quality by the proposed technique when H.264 videos are streamed over Rayleigh fading wireless channels.

A Spatial Error Concealment Using Pixelwise Fine Directional Interpolation (픽셀 단위의 정밀한 방향성 보간을 이용한 공간적 에러 은닉 기법)

  • Kim, Won-Ki;Koo, Ja-Sung;Jin, Soon-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.124-131
    • /
    • 2007
  • This paper presents a block loss recovery technique for the image block data corrupted by transmission losses through the employment of fine directional interpolation (FDI). The proposed algorithm introduces a spatial direction vector (SDV). The SDVs are extracted from the edge information of the neighboring image data. Subsequently, the SDVs are adaptively applied to interpolate lost pixels on a pixel-by-pixel basis. This approach improves the capability to more reliably recover high-detailed contents in the corrupted block. Experimental results demonstrate that the FDI method performs better as compared to previous techniques.

Recovering Corrupted Motion Vectors using Discontinuity Features of an Image (영상의 불연속 특성을 이용한 손상된 움직임 벡터 복원 기법)

  • 손남례;이귀상
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.298-304
    • /
    • 2004
  • In transmitting a compressed video bit-stream over Internet, a packet loss causes an error propagation in both spatial and temporal domain, which in turn leads to a severe degradation in image quality. In this paper, a new error concealment algorithm is proposed to repair damaged portions of the video frames in the receiver. Conventional BMA(Boundary Matching Algorithm) assumes that the pixels on the boundary of the missing block and its neighboring blocks are very similar, but has no consideration of edges t)r discontinuity across the boundary. In our approach, the edges are detected across the boundary of the lost or erroneous block. Once the edges are detected and the orientation of each edge is found, only the pixel difference along the expected edges across the boundary is measured instead of calculating differences between all adjacent pixels on the boundary. Therefore, the proposed approach needs very few computations and the experiment shows an improvement of the performance over the conventional BMA in terms of both subjective and objective quality of video sequences.