• 제목/요약/키워드: Error back propagation method

검색결과 226건 처리시간 0.035초

오류 역전파법으로구현한 컬러 인쇄물 검사에 관한 연구 (A study on the realization of color printed material check using Error Back-Propagation rule)

  • 한희석;이규영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.560-567
    • /
    • 1998
  • This paper concerned about a imputed color printed material image in camera to decrease noise and distortion by processing median filtering with input image to identical condition. Also this paper proposed the way of compares a normal printed material with an abnormal printed material color tone with trained a learning of the error back-propagation to block classification by extracting five place from identical block(3${\times}$3) of color printed material R, G, B value. As a representative algorithm of multi-layer perceptron the error Back-propagation technique used to solve complex problems. However, the Error Back-propagation is algorithm which basically used a gradient descent method which can be converged to local minimum and the Back Propagation train include problems, and that may converge in a local minimum rather than get a global minimum. The network structure appropriate for a given problem. In this paper, a good result is obtained by improve initial condition and adjust th number of hidden layer to solve the problem of real time process, learning and train.

  • PDF

신경망 회로를 이용한 필기체 숫자 인식에 관할 연구 (A Study Of Handwritten Digit Recognition By Neural Network Trained With The Back-Propagation Algorithm Using Generalized Delta Rule)

  • 이규한;정진현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2932-2934
    • /
    • 1999
  • In this paper, a scheme for recognition of handwritten digits using a multilayer neural network trained with the back-propagation algorithm using generalized delta rule is proposed. The neural network is trained with hand written digit data of different writers and different styles. One of the purpose of the work with neural networks is the minimization of the mean square error(MSE) between actual output and desired one. The back-propagation algorithm is an efficient and very classical method. The back-propagation algorithm for training the weights in a multilayer net uses the steepest descent minimization procedure and the sigmoid threshold function. As an error rate is reduced, recognition rate is improved. Therefore we propose a method that is reduced an error rate.

  • PDF

Improving the Error Back-Propagation Algorithm for Imbalanced Data Sets

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제8권2호
    • /
    • pp.7-12
    • /
    • 2012
  • Imbalanced data sets are difficult to be classified since most classifiers are developed based on the assumption that class distributions are well-balanced. In order to improve the error back-propagation algorithm for the classification of imbalanced data sets, a new error function is proposed. The error function controls weight-updating with regards to the classes in which the training samples are. This has the effect that samples in the minority class have a greater chance to be classified but samples in the majority class have a less chance to be classified. The proposed method is compared with the two-phase, threshold-moving, and target node methods through simulations in a mammography data set and the proposed method attains the best results.

Random Tabu 탐색법을 이용한 신경회로망의 고속학습알고리즘에 관한 연구 (Fast Learning Algorithms for Neural Network Using Tabu Search Method with Random Moves)

  • 양보석;신광재;최원호
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.83-91
    • /
    • 1995
  • 본 연구에서는 종래에 학습법으로 널리 이용되고 있는 역전파학습법의 문제점으로 지적되어 온 학습에 많은 시간이 걸리는 점과 국소적 최적해에 해가 수렴하여 오차가 충분히 작게 되지 않는 등의 문제점을 해결하기 위해, Hu에 의해 고안된 random tabu 탐색법을 이용하여 신경회로망의 연결강도를 최적화하는 학습알고리즘을 새로이 제안하였다. 그리고 이 방법을 배타적 논리합 문제에 적용하여 기존의 역전파학습법과 학습상수 $, $에 tabu탐색법을 이용한 결과와 비교 검토하여 본 방법이 국소적 최적해에 수렴하지 않고 수렴정도를 개선할 수 있음을 확인하였다.

  • PDF

점진적 학습영역 확장에 의한 다층인식자의 학습능력 향상 (Improvement of Learning Capabilities in Multilayer Perceptron by Progressively Enlarging the Learning Domain)

  • 최종호;신성식;최진영
    • 전자공학회논문지B
    • /
    • 제29B권1호
    • /
    • pp.94-101
    • /
    • 1992
  • The multilayer perceptron, trained by the error back-propagation learning rule, has been known as a mapping network which can represent arbitrary functions. However depending on the complexity of a function and the initial weights of the multilayer perceptron, the error back-propagation learning may fall into a local minimum or a flat area which may require a long learning time or lead to unsuccessful learning. To solve such difficulties in training the multilayer perceptron by standard error back-propagation learning rule, the paper proposes a learning method which progressively enlarges the learning domain from a small area to the entire region. The proposed method is devised from the investigation on the roles of hidden nodes and connection weights in the multilayer perceptron which approximates a function of one variable. The validity of the proposed method was illustrated through simulations for a function of one variable and a function of two variable with many extremal points.

  • PDF

신경회로망을 이용한 종합주가지수의 변화율 예측 (Prediction of Monthly Transition of the Composition Stock Price Index Using Error Back-propagation Method)

  • 노종래;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.896-899
    • /
    • 1991
  • This paper presents the neural network method to predict the Korea composition stock price index. The error back-propagation method is used to train the multi-layer perceptron network. Ten of the various economic indices of the past 7 Nears are used as train data and the monthly transition of the composition stock price index is represented by five output neurons. Test results of this method using the data of the last 18 months are very encouraging.

  • PDF

컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식 (Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms)

  • 이종희;김진환
    • 한국전자통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.471-476
    • /
    • 2010
  • 본 논문에서는 RGB 컬러 정보와 오류 역전파 신경망 알고리즘을 이용한 신 차량 번호판 인식 방법을 제안한다. 먼저, 차량 영상에서 평균 Blue값을 이용하여 차량 영상을 보정하고 픽셀값의 차를 이용하여 Red 후보 영역과 Green 후보 영역으로 구분한 후 오류 역전파 알고리즘에 적용하여 최종 Green 영역을 찾는다. 둘째, 수평 및 수직 히스토그램의 빈도수를 이용하여 번호판 영역을 추출한다. 마지막으로, 윤곽선 추적 알고리즘을 적용하여 개별 코드들을 추출하고, 오류 역전파 알고리즘을 적용하여 개별 코드들을 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위하여 실제 비영업용 신 차량 번호판에 적용한 결과, 제안된 번호판 추출 방법이 기존의 HSI(Hue Saturation Intensity) 정보를 이용한 번호판 추출 방법보다 추출률이 개선되었고 제안된 차량 번호판 인식 방법이 효율적인 것을 확인하였다.

8비트 데이타 정밀도를 가지는 다층퍼셉트론의 역전파 학습 알고리즘 (Learning of multi-layer perceptrons with 8-bit data precision)

  • 오상훈;송윤선
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.209-216
    • /
    • 1996
  • In this paper, we propose a learning method of multi-layer perceptrons (MLPs) with 8-bit data precision. The suggested method uses the cross-entropy cost function to remove the slope term of error signal in output layer. To decrease the possibility of overflows, we use 16-bit weighted sum results into the 8-bit data with appropriate range. In the forwared propagation, the range for bit-conversion is determined using the saturation property of sigmoid function. In the backwared propagation, the range for bit-conversion is derived using the probability density function of back-propagated signal. In a simulation study to classify hadwritten digits in the CEDAR database, our method shows similar generalization performance to the error back-propagation learning with 16-bit precision.

  • PDF

A Modified Error Function to Improve the Error Back-Propagation Algorithm for Multi-Layer Perceptrons

  • Oh, Sang-Hoon;Lee, Young-Jik
    • ETRI Journal
    • /
    • 제17권1호
    • /
    • pp.11-22
    • /
    • 1995
  • This paper proposes a modified error function to improve the error back-propagation (EBP) algorithm for multi-Layer perceptrons (MLPs) which suffers from slow learning speed. It can also suppress over-specialization for training patterns that occurs in an algorithm based on a cross-entropy cost function which markedly reduces learning time. In the similar way as the cross-entropy function, our new function accelerates the learning speed of the EBP algorithm by allowing the output node of the MLP to generate a strong error signal when the output node is far from the desired value. Moreover, it prevents the overspecialization of learning for training patterns by letting the output node, whose value is close to the desired value, generate a weak error signal. In a simulation study to classify handwritten digits in the CEDAR [1] database, the proposed method attained 100% correct classification for the training patterns after only 50 sweeps of learning, while the original EBP attained only 98.8% after 500 sweeps. Also, our method shows mean-squared error of 0.627 for the test patterns, which is superior to the error 0.667 in the cross-entropy method. These results demonstrate that our new method excels others in learning speed as well as in generalization.

  • PDF

컬러정보와 오류역전파 알고리즘을 이용한 교통표지판 인식 (Traffic Sign Recognition Using Color Information and Error Back Propagation Algorithm)

  • 방걸원;강대욱;조완현
    • 정보처리학회논문지D
    • /
    • 제14D권7호
    • /
    • pp.809-818
    • /
    • 2007
  • 본 논문에서는 컬러정보를 이용하여 교통표지판 영역을 추출하고, 추출된 이미지의 인식을 위해 오류 역전파 학습알고리즘을 적용한 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판의 후보영역을 추출한다. 후보영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 영역을 분할하고, 교통표지판 인식은 학습이 가능한 오류역전파 학습알고리즘을 이용하여 인식한다. 실험결과 제안된 시스템은 다양한 크기의 입력영상과 조명의 차이에 영향을 받지 않고 후보영역 추출과 인식에 우수한 성능이 입증되었다.