• Title/Summary/Keyword: Error angle

Search Result 1,313, Processing Time 0.031 seconds

Wrist Rehabilitation Training Device Using Pneumatic Inflation and Deflation of Air Cells (에어셀을 이용한 손목 재활훈련 장치)

  • Lee, Youngjin;Jeong, Yujin;Koo, Kyo-In;Chee, Youngjoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • In this paper, we propose a wrist rehabilitation training device using pneumatic inflation and deflation of air cells. By alternating inflation and deflation of upper and lower air cells, the device makes the flexional and extensional movement for wrist rehabilitation. With the angular displacement sensor, it measures the flexion-extension angle of the wrist during the training and the bending angle is used for the automatic control of the device. Using the sensor output, the regression equation was obtained to measure the bending angle of the wrist from a wrist rehabilitation training device. The measurement error of the device was evaluated by comparing the measurement output with the angle from the photograph. The measurement error of wrist bending angle between the sensor and photo was $3.2^{\circ}$ in average. With additional test and improvement, the pneumatic wrist rehabilitation training device might be used for rehabilitation training.

An Advanced Phase Angle Measurement Algorithm And Error Analysis (개선된 위상 측정 알고리즘과 오차 해석)

  • 송영석;김재철;최인규;박종식
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.25-32
    • /
    • 2004
  • An advanced algorithm for measurement of phase angle between two sinusoidal signals is proposed in this paper. This algorithm uses discrete sample data of two input signals for calculation of phase angle and amplitude. And the key parameters of the measurement algorithm are described by analytical express, so the calculation of phase angle is simplified. In this paper it is proved that harmonic distortion of the input sinusoidal signals does not affect the measurement value of phase angle by using the proposed algorithm when a whole cycle is sampled. And measurement error by the white Gaussian noise is very small compared by other algorithms.

Precision Analysis of NNSS Fix for the Assumed Error of Ship`s Speed and Course (NNSS의 침로 및 속력 추정오차에 대한 측위정도분석)

  • 김민석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 1989
  • A number of studies for the improvement of the accuracy of NNSS fix were carried out previously. But most studies were done when a ship was stationary at the fixed position. To investigate the accuracy of NNSS fix affected by the error of ship's speed and course when a ship was moving, the computer simulation was performed by each satellite, passing direction of satellite, and elevation angle. The obtained results are summarized as follows: 1. When elevation angle and passing direction of satellite were constant, there were little difference in the accuracy of NNSS fix from among those. 2. The accuracy of NNSS fox caused by the error of ship's speed was in proportion to the absolute value of it without regard to the magnitude of ship's speed, and it also became different according to the ship's course. 3. When the error of ship's speed was constant, the accuracy of the fixed position became different according to the passing direction of the satellite. 4. When the ship's course was south or north, the error of NNSS fix was greater than that of east or west, and the higher the elevation angle of the satellite, the greater the error of the NNSS fix.

  • PDF

The Effect of Neck and Shoulder Self-Stretching Exercise Using Audiovisual Media on Neck Pain, Postural Alignment, and Joint Position Error in Women with Chronic Neck Pain (시청각 매체를 활용한 목, 어깨 자가신장운동이 만성 목통증 여성의 통증, 자세정렬과 관절위치감각에 미치는 영향)

  • Jeong, Yeon-woo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • Background: The purpose of this study is to investigate the effect of neck and shoulder self-stretching exercise using audiovisual media on neck pain, postural alignment, and joint position error in women with chronic neck pain. Methods: The subjects included 20 women that gave consent to participate in the study voluntarily. They performed the self-stretching exercises using audiovisual media was carried out 20 minutes 5 times a week during 3 weeks. Neck disability index (NDI) and visual analogue scale (VAS) were used to measure the functional disability and pain, A pressure pain threshold was measured using an algometer, and a cervical range of motion (CROM) measurement tool was used to measure the range of motion and error of proprioceptive position sense of the cervical spine. To assess posture alignment, forward head angle (FHA), forward shoulder angle (FSA) were measured using image J software. Results: The neck pain intensity was statistically significantly within group (p<.05). Neck and shoulder functional disability were a statistically significant difference within group (p<.05). Splenius capitis and upper trapezius pressure pain threshold were statistically significant difference in within group (p<.05). The postural alignment was statistically significantly within group (p<.05). The cervical range of motion in neck extension, right and left lateral flexion were statistically significantly within group (p<.05). The joint position error in neck flexion, extension, right and left lateral flexion decreased statistically significantly within group (p<.05). Conclusion: Self-stretching exercise using audiovisual media increased the mobility of the neck, decreased neck pain and joint position error, and improved posture alignment. As a result, there was a positive effect by applying the self-stretching exercise using audiovisual media to people with neck pain. Based on this, it is thought that it can be used as the basis for research related to home training programs for healthy self-management.

Development of the Precise Multi-Position Alignment Method using a Pitch Motion (피치운동을 이용한 정밀 다위치 정렬기법 개발)

  • Lee, Jung-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

A Study on the Errors In the Free-Gyro Positioning System (I)

  • Jeong Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.611-614
    • /
    • 2005
  • This paper is to develop the position error equation of in the free-gyro positioning system by using two free gyros. First, the determination of a position is analyzed on the ellipsoid of the Earth and the type of the errors is defined Finally the position error equation is introduced and developed, based on the definition of the type of errors which may be involved in the FPS.

A study on spatial error occurrence characteristics of precipitation estimation of rainfall radar (강우레이더 강수량 관측의 공간적 오차 발생 특성 연구)

  • Hwang, Seokhwana;Yoon, Jung Soo;Kang, Narae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1105-1114
    • /
    • 2022
  • A study on a method to overcome the limitations of the topographical and hydrological observation environment for estimating the QPE with high consistency with the ground rainfall by utilizing the spatiotemporal observation advantages of the rainfall radar for use in flood forecasting, and quantitative observations of localized rainfall due to these limiting conditions Uncertainty should be identified in terms of flood analysis. Against this background, in this study, 22 major heavy rain events in 2016 were analyzed for each of Mt. Biseul (BSL), Mt. Sobaek (SBS), Mt. Gari (GRS), Mt. Mohu (MHS), and Mt. Seodae (SDS) to determine the observation distance and altitude. The uncertainty of observation was quantified and an error map was derived. As a result of the analysis, it was found that, on average, the rainfall radar exceeded 10% up to 100 km and 30% over 150 km. Based on the average radar operating altitude angle, it was found that the error for the altitude was approximately 10% or less up to the second altitude angle, 20% at the third or higher altitude angle, and more than 50% at the fourth altitude angle or higher.

A constrained minimization-based scheme against susceptibility of drift angle identification to parameters estimation error from measurements of one floor

  • Kangqian Xu;Akira Mita;Dawei Li;Songtao Xue;Xianzhi Li
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Drift angle is a significant index for diagnosing post-event structures. A common way to estimate this drift response is by using modal parameters identified under natural excitations. Although the modal parameters of shear structures cannot be identified accurately in the real environment, the identification error has little impact on the estimation when measurements from several floors are used. However, the estimation accuracy falls dramatically when there is only one accelerometer. This paper describes the susceptibility of single sensor identification to modelling error and simulations that preliminarily verified this characteristic. To make a robust evaluation from measurements of one floor of shear structures based on imprecisely identified parameters, a novel scheme is devised to approximately correct the mode shapes with respect to fictitious frequencies generated with a genetic algorithm; in particular, the scheme uses constrained minimization to take both the mathematical aspect and the realistic aspect of the mode shapes into account. The algorithm was validated by using a full-scale shear building. The differences between single-sensor and multiple-sensor estimations were analyzed. It was found that, as the number of accelerometers decreases, the error rises due to insufficient data and becomes very high when there is only one sensor. Moreover, when measurements for only one floor are available, the proposed method yields more precise and appropriate mode shapes, leading to a better estimation on the drift angle of the lower floors compared with a method designed for multiple sensors. As well, it is shown that the reduction in space complexity is offset by increasing the computation complexity.

Revising the DR (Dead-Reckoning) Angles Data Using Steering Wheel Sensor and Gyro Sensor (Telematics System 자립항법에서 Gyro Sensor를 이용한 Steering Wheel Angle Data 보정)

  • Park, Jin-Sup;Chung, Ki-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.149-150
    • /
    • 2007
  • By adding Gyro sensor to support the steering wheel angle sensor, an improved functional DR solution is proposed in this paper The proposed angle data algorism is developed based on the steering wheel with Gyro sensor for DR. The Gyro sensor support the error of steering wheel sensor to improve the angle data for the DR algorism.

  • PDF

A Method of Pose Matching Rate Acquisition Using The Angle of Rotation of Joint (관절의 회전각을 이용한 자세 매칭률 획득 방법)

  • Hyeon, Hun-Beom;Song, Su-Ho;Lee, Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • Recently, in rehabilitation treatment, the situation that requires a measure of the accuracy of the pose and movement of joints is being increased due to the habits and lifestyle of modern people and the environment. In particular, there is a need for active automated system that can determine itself for the matching rate of pose Basically, a method for measuring the matching rate of pose is used by extracting an image using the Kinect or extracting a silhouette using the imaging device. However, in the case of extracting a silhouette, it is difficult to set the comparison, and in the case of using the Kinect sensor, there is a disadvantages that high accumulated error rate according to movement. Therefore, In this paper, we propose a method to reduce the accumulated error of matching rate of pose getting the rotation angle of joint by measuring the real-time amount of change of 9-axis sensor. In particular, it can be measured same conditions that unrelated of the physical condition and unaffected by the data for the back and forth movement, because of it compares the current rotation angle of the joint. Finally, we show a comparative advantage results by compared with traditional method of extracting a silhouette and a method using a Kinect sensor.