• Title/Summary/Keyword: Error and Congestion Control

Search Result 58, Processing Time 0.024 seconds

Network Congestion Control using Robust Optimization Design

  • Quang, Bui Dang;Shin, Sang-Mun;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.961-967
    • /
    • 2008
  • Congestion control is one of major mechanisms to avoid dropped packets. Many researchers use optimization theories to find an efficient way to reduce congestion in networks, but they do not consider robustness that may lead to unstable network utilities. This paper proposes a new methodology in order to solve a congestion control problem for wired networks by using a robust design principle. In our particular numerical example, the proposed method provides robust solutions that guarantee high and stable network utilities.

A TCP Performance Enhancement Scheme in Wireless Mesh Networks (무선 메쉬 네트워크에서 TCP 성능 향상 기법)

  • Lee, Hye-Rim;Moon, Il-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1139-1145
    • /
    • 2010
  • Wireless mesh network is similar to ad-hoc network, so when transferred to the data packet in the wireless environment, interfered factor arise. When TCP(Transport Control Protocol) was created, however as it was design based on wired link, wireless link made more transmission error than wired link. It is existent problem that TCP unfairness and congestion collapse over wireless mesh network. But packet losses due to transmission errors are more frequent. The cause of transmission error in wireless ad-hoc network may be inexactly regarded as indications of network congestion. And then, Congestion Control Algorithm was running by this situation causes the TCP performance degradation. In this paper, proposed TCP can adaptively regulate the congestion window through moving node in the Wireless Mesh Network. And it enhanced the performance.

A Performance Study on Congestion Control Schemes for the Broadband Communication Networks (광대역통신망에서 폭주제어 방식에 대한 성능연구)

  • Doo-yeong Park
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, we carry out a performance study related to the Broadband Network. For this network, it has been proposed to use the leaky bucket as a way of controlling congestion within the network. On the top of leaky bucket type rate based congestion control scheme for high speed networks, a user will typically operate an error control scheme for retransmitting lost and erroneous packets. We propose a performance model in order to study the interaction between a user's error control scheme and the leaky bucket congestion control scheme for high speed networks. Simulation results show that parameters such as the window size and the token generation rate in the leaky bucket are key factors affecting the end-to-end delay.

  • PDF

NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

  • Lee, Jae-Hyung;Kim, Jung-Rae;Park, Min-U;Koo, Ja-Hwan;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.333-351
    • /
    • 2008
  • Transmission control protocols have to overcome common problems in wireless networks. TCP employing both packet loss discrimination mechanism and available bandwidth estimation algorithm, known as the good existing solution, shows significant performance enhancement in wireless networks. For instance, TCP New Jersey which exhibits high throughput in wireless networks intends to improve TCP performance by using available bandwidth estimation and congestion warning. Even though it achieves 17% and 85% improvements in terms of goodput over TCP Westwood and TCP Reno, respectively, we further improve it by exploring maximized available bandwidth estimation, handling bit-error-rate error recovery, and effective adjustment of sending rate for retransmission timeout. Hence, we propose TCP NJ+, showing that for up to 5% packet loss rate, it outperforms other TCP variants by 19% to 104% in terms of goodput when the network is in bi-directional background traffic.

A congestion control scheme estimating global channel busy ratio in VANETs

  • Kim, Tae-won;Jung, Jae-il;Lee, Joo-young
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • In vehicular safety service, every vehicle broadcasts Basic Safety Message (BSM) periodically to inform neighbor vehicles of host vehicle information. However, this can cause network congestion in a region that is crowded with vehicles resulting in a reduction in the message delivery ratio and an increase in the end-to-end delay. Therefore, it could destabilize the vehicular safety service system. In this paper, in order to improve the congestion control and to consider the hidden node problem, we propose a congestion control scheme using entire network congestion level estimation combined with transmission power control, data rate control and time slot based transmission control algorithm. The performance of this scheme is evaluated using a Qualnet network simulator. The simulation result shows that our scheme mitigates network congestion in heavy traffic cases and enhances network capacity in light traffic cases, so that packet error rate is perfectly within 10% and entire network load level is maintained within 60~70%. Thus, it can be concluded that the proposed congestion control scheme has quite good performance.

An Enhanced TCP Congestion Control using Link-Error Rates at Wireless Edges (무선 에지의 링크 오류율을 이용한 개선된 TCP 혼잡제어)

  • Oh, Jun-Seok;Park, Tan-Se;Park, Chang-Yun;Jung, Choong-Il
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.794-798
    • /
    • 2010
  • Assuming that a wireless link is mostly used at the network edge and the wireless NIC driver keeps monitoring the error rate of its link, this paper proposes an enhanced TCP congestion control, TCP-L (TCP Link-Aware). TCP-L predicts true congestion losses occurred inside the wired link area by utilizing the wireless link error rate. As a result, it mitigates performance degradation caused from TCP congestion control actions when segments losses occur in a wireless link. Experimental results show that TCP-L provides better performance and fairness in lossy wireless links than existing TCP congestion control schemes. Our approach utilizing the characteristic of the link at TCP could be well adapted to new wireless environments such as Cognitive Radio and ACK-less IEEE 802.11, where a frame may be delivered with a very long delay or lost in the link.

DCCP based Congestion Control Scheme to support Mobility of Devices on Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경에서 단말의 이동성을 지원하기 위한 DCCP 기반의 혼잡 제어 정책)

  • Park Si-Yong;Kim Sung-Min;Lee Tae-Hoon;Chung Ki-Dong
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.59-75
    • /
    • 2006
  • In this paper, we propose a congestion control scheme to control the congestion due to the mobility of ubiquitous devices on ubiquitous computing environment. Especially, this congestion control scheme provides a reverse congestion avoidance state which can classify between packet error by features of wireless network and packet dropping by congestion. Also, it provides a slow stop state which can minimize bandwidth waste due to congestion control. The proposed congestion control scheme controls more adaptive than existing congestion control schemes. The proposed congestion control scheme is designed based on DCCP(Datagram Congestion Control Protocol) being proposed by IETF(Internet Engineering Task Force) and implemented on the Linux kernel. In simulation results, the proposed congestion control scheme provides good bandwidth throughput in wireless network as well as in wired network.

Adjusting the Retry Limit for Congestion Control in an Overlapping Private BSS Environment

  • Park, Chang Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1881-1900
    • /
    • 2014
  • Since 802.11 wireless LANs are so widely used, it has become common for numerous access points (APs) to overlap in a region, where most of those APs are managed individually without any coordinated control. This pattern of wireless LAN usage is called the private OBSS (Overlapping Basic Service Set) environment in this paper. Due to frame collisions across BSSs, each BSS in the private OBSS environment suffers severe performance degradation. This study approaches the problem from the perspective of congestion control rather than noise or collision resolution. The retry limit, one of the 802.11 attributes, could be used for traffic control in conjunction with TCP. Reducing the retry limit causes early discard of a frame, and it has a similar effect of random early drops at a router, well known in the research area of congestion control. It makes the shared link less crowded with frames, and then the benefit of fewer collisions surpasses the penalty of less strict error recovery. As a result, the network-wide performance improves and so does the performance of each BSS eventually. Reducing the retry limit also has positive effects of merging TCP ACKs and reducing HOL-like blocking time at the AP. Extensive experiments have validated the idea that in the OBSS environment, reducing the retry limit provides better performance, which is contrary to the common wisdom. Since our strategy is basically to sacrifice error recovery for congestion control, it could yield side-effects in an environment where the cost of error recovery is high. Therefore, to be useful in general network and traffic environments, adaptability is required. To prove the feasibility of the adaptive scheme, a simple method to dynamically adjust the value of the retry limit has been proposed. Experiments have shown that this approach could provide comparable performance in unfriendly environments.

Performance Improvement of Wireless Mesh Networks using TCP Congestion Control Algorithm (TCP 혼잡제어 알고리즘을 이용한 무선 메쉬 네트워크의 성능 개선)

  • Lee, Hye-Rim;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.253-259
    • /
    • 2010
  • Wireless mesh network is flexible network like Ad hoc network or bluetooth together based on base station. But, wireless mesh network shows high packet loss and when TCP was created, however as it was design based on wired link, wireless link made more transmission error than wired link. It is existent problem of TCP congestion control algorithm that TCP unfairness and congestion collapse over wireless mesh network. When TCP operation occurs with the packet loss where is not the congestion loss, it brings the performance degradation which is serious. In this paper, in order to improve efficient TCP congestion control algorithm in wireless mesh network, we proposed that TCP can adaptively regulate the congestion window in wireless link.

TCP Performance Control Method for the Wireless Link by using Extended ECN Mechanism (확장된 ECN 메커니즘을 사용한 무선 링크에서의 TCP성능 제어 기법)

  • Yun, You-Hun;Kim, Tai-Yun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.336-343
    • /
    • 2002
  • Nowadays, after appearance of wireless network the existent internet environment is changing into the united wire/wireless network. But the present TCP regards all of the packet losses on transmission as the packet tosses due to the congestion. When it is applied on the wireless path, it deteriorates the end-to-end TCP throughput because it regards the packet loss by handoff or bit error as the packet loss by the congestion and it reduces the congestion window. In this paper, for solving these problems we propose the method that controls the performance of TCP on the wireless link by extending ECN which is used as a congestion control mechanism on the existent wire link. This is the method that distinguished the packet loss due to the congestion from due to bit error or handoff on the wireless network, so it calls the congestion control mechanism only when there occurs the congestion in the united wire/wireless network.