• Title/Summary/Keyword: Error Resilience

Search Result 68, Processing Time 0.024 seconds

A New Data Partitioning of DCT Coefficients for Error-resilient Transmission of Video (비디오의 에러내성 전송을 위한 DCT 계수의 새로운 분할 기법)

  • Roh, Kyu-Chan;Kim, Jae-Kyoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.585-590
    • /
    • 2002
  • In the typical data partitioning for error-resilient video coding, motion and macroblock header information is separated from the texture information. It can be an effective tool for the transmission of video over the error prone environment. For Intra-coded frames, however, the loss of DCT (discrete cosine transform) coefficients is fatal because there is no ther information to reconstruct the corrupted macroblocks by errors. For Inter-coded frames, when error occurs in DCT coefficients, the picture quality is degraded because all DCT coefficients are discarded in those packets. In this paper, we propose an efficient data partitioning and coding method for DCT-based error-resilient video. The quantized DCT coefficients are partitioned into the even-value approximation and the remainder parts. It is shown that the proposed algorithm provides a better quality of the high priority part than the conventional methods.

Adaptive QoS Management for MPEG-4 Streaming Service over Internet (인터넷 기반의 MPEG-4 스트리밍 서비스를 위한 적응적 QoS 관리)

  • 최지훈;이상조;서덕영;김현철;이명호
    • Journal of Broadcast Engineering
    • /
    • v.5 no.2
    • /
    • pp.227-238
    • /
    • 2000
  • This paper, at first, provides analysis on loss pattern of Internet based on real experiments of the current Internet. Then, we propose an effective adaptive QoS management technique, in which measured loss pattern as well as PLR (Packet Loss Ratio) are used to select titrate of temporal scalability. level of FEC and retransmission This selection is also incorporated to the MPEG-4 error resilience tools and error concealment techniques. In order to minimize effect of packet loss, multimedia stream is segmented in the unit of group of Pictures (GOP) and interleaving and FEC are applied to the segment. Proposed algorithms are applied to build a VOD system.

  • PDF

Network Adaptive ARQ Error Control Scheme for Effective Video Transport over IP Networks (IP 망을 통한 비디오 전송에 효율적인 망 적응적 ARQ 오류제어 기법)

  • Shim, Sang-Woo;Seo, Kwang-Deok;Kim, Jin-Soo;Kim, Jae-Gon;Jung, Soon-Heung;Bae, Seong-Jun
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.530-541
    • /
    • 2011
  • In this paper, we propose an effective network-adaptive ARQ based error control scheme to provide video streaming services through IP networks where packet error usually occurs. If time delay and feedback channel are allowed, client can request server to retransmit lost packets through IP networks. However, if retransmission is unconditionally requested without considering network condition and number of simultaneous feedback messages, retransmitted packets may not arrive in a timely manner so that decoding may not occur. In the proposed ARQ, a client conditionally requests retransmission based on assumed network condition, and it further determines valid retransmission time so that effective ARQ can be applied. In order to verify the performance of the proposed adaptive ARQ based error control, NIST-Net is used to emulate packet-loss network environment. It is shown by simulations that the proposed scheme provides noticeable error resilience with significantly reduced traffics required for ARQ.

Effective Method of Video Services over QoS Controlled Network (QoS 서비스 모델에서의 비디오 서비스의 효과적 적용 기법)

  • Jeong, Jun-Ho;Suh, Doug-Young;Shin, Ji-Tae;Seok, Joo-Myoung;Lee, Kyou-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.672-686
    • /
    • 2002
  • 현재 단대단(End-to-End) 비디오 서비스의 질을 높이기 위해 많은 연구가 각 계층별로 진행되고 있다. 전송계층에서의 오류 제어(Error Control), 네트워크계층에서의 QoS (Quality of Service)모델, 표현 및 응용계층에서의 오류 강인성(Error resilience)/오류 은닉(Error concealment) 등이 연구 개발되고 있다. 그러나 계층 간의 연관성이 높은 부분에서의 통합을 통한 성능향상에 관한 연구는 그 필요성과 효율에 비해 아직도 미흡하다. 본 논문은 QoS 서비스 모델하에서의 적응적 FEC(Forward Error Correction) 적용 및 우선순위에 따른 비디오패킷(VP ,VideoPacket)을 통하여 효율적인 계층화 비디오 스트리밍을 단대단 QoS성능의 향상에 관점을 맞추어 제안한다. 제안하는 방식은 최소 화질 보장과 같은 효율에서 보다 적은 가격에서의 서비스를 제공할 수 있다. 이를 위하여 통합형 서비스(IntServ, IS, Integrated Service) 의 자원예약을 사용하는 방법과 높은 가격의 자원 예약을 사용하지 않는 차별화 서비스(DiffServ, DS, Differentiated Service)를 적용했으며 이에 보장형 서비스의 특징을 공통을 가지기 위해 계층화 FEC를 적용하였으며 적절한 가격의 조절을 위하여 비디오패킷을 통한 데이터 분할을 적용하였다. 본 논문은 또한 최종 사용자의 만족도를 PSNR(Picture Signal to Noise Ration)과 PSNR에서 표현하지 못하는 부분의 평가를 위해 손상프레임율(DFR, Damaged Frame Ratio)과 오류프레임율(EFR,Error Frame Ratio)을 제안 이를 통해 평가하고자 한다. 제안하는 방식의 실험 결과는 비디오 코딩계층과 전송 계층, 네트워크 계층의 결합된 성능이며 이는 또한 화질의 개선뿐만 아니라 사용자의 가격문제에 대하여서도 비교 분석하였다.

A Bit-Error Resilient Wavelet Video Coding Scheme in Wireless Channels (무선 채널의 비트 에러에 강한 웨이블릿 비디오 코딩 기법)

  • 이주경;정기동
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.695-704
    • /
    • 2003
  • A wavelet-based video stream is more susceptible to the network transmission errors than DCT-based video. This is because bit-errors in a subband of a video frame affect not only the other subbands within the current frame but also the subsequent frames. In this paper, we propose a video source coding scheme called IPC(Intra Prediction Coding) scheme in order to reduce the error propagation to the subsequent frames. In the proposed scheme, a subband except LL subband in the current frame refers to the lower-level subband within the same frame. This reduces the error propagation to subsequent frames. We evaluated the performance of our proposed scheme in the simulated wireless network environment. As a result of tests, it was shown that the proposed algorithm shows better performance than MRME in a heavy motion image sequence while IPC outperforms MRME at a high bit-rate in small motion image sequence.

An Effective Error-Concealment Approach for Video Data Transmission over Internet (인터넷상의 비디오 데이타 전송에 효과적인 오류 은닉 기법)

  • 김진옥
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.736-745
    • /
    • 2002
  • In network delivery of compressed video, packets may be lost if the channel is unreliable like Internet. Such losses tend to of cur in burst like continuous bit-stream error. In this paper, we propose an effective error-concealment approach to which an error resilient video encoding approach is applied against burst errors and which reduces a complexity of error concealment at the decoder using data hiding. To improve the performance of error concealment, a temporal and spatial error resilient video encoding approach at encoder is developed to be robust against burst errors. For spatial area of error concealment, block shuffling scheme is introduced to isolate erroneous blocks caused by packet losses. For temporal area of error concealment, we embed parity bits in content data for motion vectors between intra frames or continuous inter frames and recovery loss packet with it at decoder after transmission While error concealment is performed on error blocks of video data at decoder, it is computationally costly to interpolate error video block using neighboring information. So, in this paper, a set of feature are extracted at the encoder and embedded imperceptibly into the original media. If some part of the media data is damaged during transmission, the embedded features can be extracted and used for recovery of lost data with bi-direction interpolation. The use of data hiding leads to reduced complexity at the decoder. Experimental results suggest that our approach can achieve a reasonable quality for packet loss up to 30% over a wide range of video materials.

Performance Evaluation of Bit Error Resilience for Pixel-domain Wyner-Ziv Video Codec with Frame Difference Residual Signal (화면 간 차이 신호에 대한 화소 영역 위너-지브 비디오 코덱의 비트 에러 내성 성능 평가)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.20-28
    • /
    • 2012
  • DVC(Distributed Video Coding) technique is a new paradigm, which is based on the Slepian-Wolf and Wyner-Ziv theorems. DVC offers not only flexible partitioning of the complexity between the encoder and decoder, but also robustness to channel errors due to intrinsic joint source-channel coding. Many conventional research works have been focused on the light video encoder and its rate-distortion performance improvement. However, in this paper, we propose a new DVC codec which is effectively applicable for error-prone environment. The proposed method adopts a quantiser without dead-zone and symmetric Gray code around zero value. Through computer simulations, the proposed method is evaluated by the bit errors position as well as the number of burst bit errors. Additionally, it is shown that the maximum and minimum transmission rate for the given application can be linearly determined by the number of bit errors.

Hardware-Software Implementation of MPEG-4 Video Codec

  • Kim, Seong-Min;Park, Ju-Hyun;Park, Seong-Mo;Koo, Bon-Tae;Shin, Kyoung-Seon;Suh, Ki-Bum;Kim, Ig-Kyun;Eum, Nak-Woong;Kim, Kyung-Soo
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.489-502
    • /
    • 2003
  • This paper presents an MPEG-4 video codec, called MoVa, for video coding applications that adopts 3G-324M. We designed MoVa to be optimal by embedding a cost-effective ARM7TDMI core and partitioning it into hardwired blocks and firmware blocks to provide a reasonable tradeoff between computational requirements, power consumption, and programmability. Typical hardwired blocks are motion estimation and motion compensation, discrete cosine transform and quantization, and variable length coding and decoding, while intra refresh, rate control, error resilience, error concealment, etc. are implemented by software. MoVa has a pipeline structure and its operation is performed in four stages at encoding and in three stages at decoding. It meets the requirements of MPEG-4 SP@L2 and can perform either 30 frames/s (fps) of QCIF or SQCIF, or 7.5 fps (in codec mode) to 15 fps (in encode/decode mode) of CIF at a maximum clock rate of 27 MHz for 128 kbps or 144 kbps. MoVa can be applied to many video systems requiring a high bit rate and various video formats, such as videophone, videoconferencing, surveillance, news, and entertainment.

  • PDF

The Analysis of the Relation between Regional Industrial Diversity and Regional Business Cycle (지역의 산업다양성과 지역경기변동의 관계 분석)

  • Woo, Youngjin;Kim, Euijune
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.3
    • /
    • pp.3-19
    • /
    • 2017
  • The purpose of this paper is to analyze the impacts of regional industrial diversity on regional business cycle response to national volatility. We employed mean group and pooled mean group estimators of panel vector error-correction models in order to control unobserved heterogeneity of the port cities, such as Pusan, Ulsan and Incheon. The results show that in various industrial regions, short-term fluctuations in the unemployment rate are small compared to other regions. On the contrary, long-term volatility of manufacturing production index is low in those regions.

Error Resilience in Image Transmission Using LVQ and Turbo Coding

  • Hwang, Junghyeun;Joo, Sanghyun;Kikuchi, Hisakazu;Sasaki, Shigenobu;Muramatsu, Shogo;Shin, JaeHo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.478-481
    • /
    • 2000
  • In this paper, we propose a joint coding system for still images using source coding and powerful error correcting code schemes. Our system comprises an LVQ (lattice vector quantization) source coding for wavelet transformed images and turbo coding for channel coding. The parameters of the image encoder and channel encoder have been optimized for an n-D (dimension) cubic lattice (D$_{n}$, Z$_{n}$), parallel concatenation fur two simple RSC (recursive systematic convolutional code) and an interleaver. For decoding the received image in the case of the AWGN (additive white gaussian noise) channel, we used an iterative joint source-channel decoding algorithm for a SISO (soft-input soft-output) MAP (maximum a posteriori) module. The performance of transmission system has been evaluated in the PSNR, BER and iteration times. A very small degradation of the PSNR and an improvement in BER were compared to a system without joint source-channel decoding at the input of the receiver.ver.

  • PDF