• Title/Summary/Keyword: Error Reduction

Search Result 1,416, Processing Time 0.028 seconds

Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris

  • Huang, Peng;Wang, Feng;Fu, Anmin;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.17-41
    • /
    • 2016
  • To address the uncertainty of the flight trajectories caused by the turbulence and gustiness of the wind field over the roof and in the wake of a building, a 3-D probabilistic trajectory model of flat-type wind-borne debris is developed in this study. The core of this methodology is a 6 degree-of-freedom deterministic model, derived from the governing equations of motion of the debris, and a Monte Carlo simulation engine used to account for the uncertainty resulting from vertical and lateral gust wind velocity components. The influence of several parameters, including initial wind speed, time step, gust sampling frequency, number of Monte Carlo simulations, and the extreme gust factor, on the accuracy of the proposed model is examined. For the purpose of validation and calibration, the simulated results from the 3-D probabilistic trajectory model are compared against the available wind tunnel test data. Results show that the maximum relative error between the simulated and wind tunnel test results of the average longitudinal position is about 20%, implying that the probabilistic model provides a reliable and effective means to predict the 3-D flight of the plate-type wind-borne debris.

Area-Efficient Squarer and Fixed-Width Squarer Design (저면적 제곱기 및 고정길이 제곱기의 설계)

  • Cho, Kyung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • The partial product matrix (PPM) of a parallel squarer is symmetric. To reduce the depth of PPM, it can be folded, shifted and rearranged. In this paper, we present an area-efficient squarer design method using new partial product rearrangement. Also, a fixed-width squarer design method of the proposed squarer is presented. By simulations, it is shown that the proposed squarers lead to up to 17% reduction in area, 10% reduction in propagation delay and 10% reduction in power consumption compared with previous squarers. By using the proposed fixed-width squarers, the area, propagation delay and power consumption can be further reduced up to 30%, 16% and 28%, respectively.

Vision-based Reduction of Gyro Drift for Intelligent Vehicles (지능형 운행체를 위한 비전 센서 기반 자이로 드리프트 감소)

  • Kyung, MinGi;Nguyen, Dang Khoi;Kang, Taesam;Min, Dugki;Lee, Jeong-Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.627-633
    • /
    • 2015
  • Accurate heading information is crucial for the navigation of intelligent vehicles. In outdoor environments, GPS is usually used for the navigation of vehicles. However, in GPS-denied environments such as dense building areas, tunnels, underground areas and indoor environments, non-GPS solutions are required. Yaw-rates from a single gyro sensor could be one of the solutions. In dealing with gyro sensors, the drift problem should be resolved. HDR (Heuristic Drift Reduction) can reduce the average heading error in straight line movement. However, it shows rather large errors in some moving environments, especially along curved lines. This paper presents a method called VDR (Vision-based Drift Reduction), a system which uses a low-cost vision sensor as compensation for HDR errors.

Torque Ripple Reduction in Direct Torque Control of Five-Phase Induction Motor Using Fuzzy Controller with Optimized Voltage Vector Selection Strategy

  • Shin, Hye Ung;Kang, Seong Yun;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1177-1186
    • /
    • 2017
  • This paper presents a torque ripple reduction method of direct torque control (DTC) using fuzzy controller with optimal selection strategy of voltage vectors in a five-phase induction motor. The conventional DTC method has some drawbacks. First, switching frequency changes according to the hysteresis bands and motor's speed. Second, the torque ripple is rapidly increased in long control period. In order to solve these problems, some/most papers have proposed torque ripple reduction methods by using the optimal duty ratio of the non-zero voltage vector. However, these methods are complicated in accordance with the parameter. If this drawback is eliminated, the torque ripple can be reduced compared with conventional method. In addition, the DTC can be simply controlled without the use of the parameter. Therefore, the proposed algorithm is changing the voltage vector insertion time by using the designed fuzzy controller. Also, the optimized voltage vector selection method is used in accordance with the torque error. Simulation and experimental results show effectiveness of the proposed control algorithm.

High Accurate Creep Compensation of the Loadcell using the Strain Gauge (스트레인 게이지식 로드셀의 고정밀 크립보상)

  • Seo, Hae-Jun;Jung, Haing-Sup;Ryu, Gi-Ju;Cho, Tae-Won
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.34-44
    • /
    • 2012
  • This paper proposes a practical compensation method by using digital signal processing over the creep error which is representative in strain gauge loadcell. The signal compensation method carry out the simulation by deciding compensation constant (time constant) and coefficient measuring the loadcell output response. Then, compensation constant and coefficient are stored on the microprocessor. By using calculated on microprocessor creep error compensation values, weighting value is showed as a digital signal by reducing error values measured through output signals of loadcell. In addition, we apply error compensation method in order to have a dedicated software for loadcell electronic scale. This technique is useful because it has great influence on error rate reduction that has been produced by conventional electronic scales (0.03%). As a result our technique gives better accuracy (0.01%~0.003%) as what is given by digital electronic scale, while it has less complex operation processing.

A Design of Low-Error Truncated Booth Multiplier for Low-Power DSP Applications (저전력 디지털 신호처리 응용을 위한 작은 오차를 갖는 절사형 Booth 승산기 설계)

  • 정해현;박종화;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.323-329
    • /
    • 2002
  • This paper describes an efficient error-compensation technique for designing a low-error truncated Booth multiplier which produces an N-bit output from a two's complement multiplication of two N bit inputs by eliminating the N least-significant bits. Applying the proposed method, a truncated Booth multiplier for area-efficient and low-power applications has been designed, and its performance(truncation error, area) was analyzed. Since the truncated Booth multiplier does not have about half the partial product generators and adders, it results an area reduction of about 35%, compared with no-truncated parallel multipliers. Error analysis shows that the proposed approach reduces the average truncation error by approximately 60%, compared with conventional methods. A 16-b$\times$16-b truncated Booth multiplier core is designed on full-custom style using 0.35-${\mu}{\textrm}{m}$ CMOS technology. It has 3,000 transistors on an area of 330-${\mu}{\textrm}{m}$$\times$262-${\mu}{\textrm}{m}$ and 20-㎽ power dissipation at 3.3-V supply with 200-MHz operating frequency.

Location Error Reduction method using Iterative Calculation in UWB system (Iterative Calculation을 이용한 UWB 위치측정에서의 오차감소 기법)

  • Jang, Sung-Jeen;Hwang, Jae-Ho;Choi, Nack-Hyun;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.105-113
    • /
    • 2008
  • In Ubiquitous Society, accurate Location Calculation of user's device is required to achieve the need of users. As the location calculation is processed by ranging between transceivers, if some obstacles exist between transceivers, NLoS(Non-line-of-Sight) components of received signal increase along with the reduction of LoS(Line-of-Sight) components. Therefore the location calculation error will increase due to the NLoS effect. The conventional location calculation algorithm has the original ranging error because there is no transformation of ranging information which degrades the ranging accuracy. The Iterative Calculation method which minimizes the location calculation error relys on accurately identifying NLoS or LoS condition of the tested channel. We employ Kurtosis, Mean Excess Delay and RMS Delay spread of the received signal to identify whether the tested channel is LoS or NLoS firstly. Thereafter, to minimize location calculation error, the proposed Iterative Calculation method iteratively select random range and finds the averaged target location which has high probability. The simulation results confirm the enhancement of the proposed method.

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

Substitutability of Noise Reduction Algorithm based Conventional Thresholding Technique to U-Net Model for Pancreas Segmentation (이자 분할을 위한 노이즈 제거 알고리즘 기반 기존 임계값 기법 대비 U-Net 모델의 대체 가능성)

  • Sewon Lim;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.663-670
    • /
    • 2023
  • In this study, we aimed to perform a comparative evaluation using quantitative factors between a region-growing based segmentation with noise reduction algorithms and a U-Net based segmentation. Initially, we applied median filter, median modified Wiener filter, and fast non-local means algorithm to computed tomography (CT) images, followed by region-growing based segmentation. Additionally, we trained a U-Net based segmentation model to perform segmentation. Subsequently, to compare and evaluate the segmentation performance of cases with noise reduction algorithms and cases with U-Net, we measured root mean square error (RMSE) and peak signal to noise ratio (PSNR), universal quality image index (UQI), and dice similarity coefficient (DSC). The results showed that using U-Net for segmentation yielded the most improved performance. The values of RMSE, PSNR, UQI, and DSC were measured as 0.063, 72.11, 0.841, and 0.982 respectively, which indicated improvements of 1.97, 1.09, 5.30, and 1.99 times compared to noisy images. In conclusion, U-Net proved to be effective in enhancing segmentation performance compared to noise reduction algorithms in CT images.

Adaptive Control of End Milling Machine to Improve Machining Straightness (직선도 개선을 위한 엔드밀링머시인 의 적응제어)

  • 김종선;정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.590-597
    • /
    • 1985
  • A recursive geometric adaptive control method to compensate for machining straightness error in the finished surface due to tool deflection and guideway error generated by end milling process is developed. The relationship between the tool deflection and the feedrate is modeled by a modified Taylor's tool life equation. Without a priori knowledge on the variations off cutting parameters, time varying parameters are then estimated by an exponentially windowed recursive least squares method with only post-process measurements of the straightness error. The location error is controlled by shifting the milling bed in the direction perpendicular to the finished surface and adding a certain amount of feedrate with respect to the tool deflection model before cutting. The waviness error is compensated by adjusting the feedrate during machining. Experimental results show that location error is controlled within a range of fixturing error of the bed on the guideway and that about 60% reduction in the waviness error can be achieved within a few steps of parameter adaption under wide operating ranges of cutting conditions even if the parameters do not converge to fixed values.