• Title/Summary/Keyword: Error Quantification

Search Result 106, Processing Time 0.029 seconds

The effects of uncertainties in structural analysis

  • Pellissetti, M.F.;SchueIler, G.I.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.311-330
    • /
    • 2007
  • Model-based predictions of structural behavior are negatively affected by uncertainties of various type and in various stages of the structural analysis. The present paper focusses on dynamic analysis and addresses the effects of uncertainties concerning material and geometric parameters, mainly in the context of modal analysis of large-scale structures. Given the large number of uncertain parameters arising in this case, highly scalable simulation-based methods are adopted, which can deal with possibly thousands of uncertain parameters. In order to solve the reliability problem, i.e., the estimation of very small exceedance probabilities, an advanced simulation method called Line Sampling is used. In combination with an efficient algorithm for the estimation of the most important uncertain parameters, the method provides good estimates of the failure probability and enables one to quantify the error in the estimate. Another aspect here considered is the uncertainty quantification for closely-spaced eigenfrequencies. The solution here adopted represents each eigenfrequency as a weighted superposition of the full set of eigenfrequencies. In a case study performed with the FE model of a satellite it is shown that the effects of uncertain parameters can be very different in magnitude, depending on the considered response quantity. In particular, the uncertainty in the quantities of interest (eigenfrequencies) turns out to be mainly caused by very few of the uncertain parameters, which results in sharp estimates of the failure probabilities at low computational cost.

Chair side measuring instrument for quantification of the extent of a transverse maxillary occlusal plane cant

  • Naini, Farhad B.;Messiha, Ashraf;Gill, Daljit S.
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.21.1-21.3
    • /
    • 2019
  • Background: Treatment planning the correction of a transverse maxillary occlusal plane cant often involves a degree of qualitative "eyeballing", with the attendant possibility of error in the estimated judgement. A simple chair side technique permits quantification of the extent of asymmetry and thereby quantitative measurements for the correction of the occlusal plane cant. Methods: A measuring instrument may be constructed by soldering the edge of a stainless steel dental ruler at 90° to the flat surface of a similar ruler. With the patient either standing in natural head position, or alternatively seated upright in the dental chair, and a dental photographic retractor in situ, the flat under-surface of the horizontal part of this measuring instrument is placed on a unilateral segment of a bilateral structure, e.g. the higher maxillary canine orthodontic bracket hook. The vertical ruler is held next to the contralateral canine tooth, and the vertical distance measured directly from the canine bracket to the flat under-surface of the horizontal part of the measuring instrument. Results: This vertical distance quantifies the overall extent of movement required to level the maxillary occlusal plane. Conclusions: This measuring instrument and simple chair side technique helps to quantify the overall extent of surgical levelling required and may be a useful additional technique in our clinical diagnostic armamentarium.

Development of simulation-based testing environment for safety-critical software

  • Lee, Sang Hun;Lee, Seung Jun;Park, Jinkyun;Lee, Eun-chan;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.570-581
    • /
    • 2018
  • Recently, a software program has been used in nuclear power plants (NPPs) to digitalize many instrumentation and control systems. To guarantee NPP safety, the reliability of the software used in safetycritical instrumentation and control systems must be quantified and verified with proper test cases and test environment. In this study, a software testing method using a simulation-based software test bed is proposed. The test bed is developed by emulating the microprocessor architecture of the programmable logic controller used in NPP safety-critical applications and capturing its behavior at each machine instruction. The effectiveness of the proposed method is demonstrated via a case study. To represent the possible states of software input and the internal variables that contribute to generating a dedicated safety signal, the software test cases are developed in consideration of the digital characteristics of the target system and the plant dynamics. The method provides a practical way to conduct exhaustive software testing, which can prove the software to be error free and minimize the uncertainty in software reliability quantification. Compared with existing testing methods, it can effectively reduce the software testing effort by emulating the programmable logic controller behavior at the machine level.

EPMA quantification on the chemical composition of retained austenite in a Fe-Mn-Si-C-based multi-phase steel

  • Yoon‑Uk Heo;Chang‑Gon Jeong;Soo‑Hyun Kim;Gun‑Young Yoon;T. T. T. Trang;Youngyun Woo;Eun Yoo Yoon;Young‑Seon Lee
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.14.1-14.10
    • /
    • 2022
  • An electron probe X-ray microanalyzer (EPMA) is an essential tool for studying chemical composition distribution in the microstructure. Quantifying chemical composition using standard specimens is commonly used to determine the composition of individual phases. However, the local difference in chemical composition in the standard specimens brings the deviation of the quantified composition from the actual one. This study introduces how to overcome the error of quantification in EPMA in the practical aspect. The obtained results are applied to evaluate the chemical com position of retained austenite in multi-phase steel. Film-type austenite shows higher carbon content than blocky-type one. The measured carbon contents of the retained austenite show good coherency with the calculated value from the X-ray diffraction.

Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping-Part 1: Quantification of Thickness Measurement Deviation

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.820-830
    • /
    • 2016
  • Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies) have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

Revision of the Railway Human Reliability Analysis Procedure and Development of an R-HRA Software (철도사고 위험도평가를 위한 철도 인간신뢰도분석 방법의 개정과 전산 소프트웨어의 개발)

  • Kim, Jae-Whan;Kim, Seung-Hwan;Jang, Seung-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.404-409
    • /
    • 2008
  • This paper consists largely of two parts: the first part introduces the revised railway human reliability analysis (R-HRA) method which is to be used under the railway risk assessment framework, and the second part presents the features of a computer software which was developed for aiding the R-HRA process. The revised R-HRA method supplements the original R-HRA method by providing a specific task analysis guideline and a classification of performance shaping factors (PSFs) to support a consistent analysis between analysts. The R-HRA software aids the analysts in gathering information for HRA, qualitative error prediction including identification of external error modes and internal error modes, quantification of human error probability, and reporting the overall analysis results. The revised R-HRA method and software are expected to support the analysts in an effective and efficient way in analysing human error potential in railway event or accident scenarios.

Errors in Isotope Dilution Caused by Matrix-induced Mass Bias Effect in Quadrupole Inductively Coupled Plasma-Mass Spectrometry

  • Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3482-3488
    • /
    • 2014
  • Matrix-induced mass bias and its effect on the accuracy of isotope ratio measurements have been examined for a quadrupole-based inductively coupled plasma-mass spectrometer (Q ICP-MS). Matrix-induced mass bias effect was directly proportional to % mass difference, and its magnitude varied for element and nebulizer flow rate. For a given element and conditions in a day, the effect was consistent. The isotope ratio of Cd106/Cd114 under $200{\mu}g\;g^{-1}$ U matrix deviated from the natural value significantly by 3.5%. When Cd 111 and Cd114 were used for the quantification of Cd with isotope dilution (ID) method, the average of differences between the calculated and measured concentrations was -0.034% for samples without matrix ($0.076{\mu}g\;g^{-1}$ to $0.21{\mu}g\;g^{-1}$ for the period of 6 months). However, the error was as large as 1.5% for samples with $200{\mu}g\;g^{-1}$ U. The error in ID caused by matrix could be larger when larger mass difference isotopes are used.

Quantification of Naproxen in Pharmaceutical Formulation using Near-Infrared Spectrometry (근적외 분광분석법을 이용한 나프록센 정제의 정량분석)

  • Kim Do Hyung;Woo Young Ah;Kim Hyo Jin
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Near-infrared (NIR) spectroscopy has been widely applied in various field, since it is nondestructive and no sample preparation is required. In this paper, NIR spectroscopy was used for the determination of naproxen in a commercial pharmaceutical preparation. NIR spectroscopy was used to determine the content of naproxen in intact naproxen tablets containing 250 mg ($65.8\%$ nominal concentration) by collecting NIR spectra in the range of $1100{\sim}1750nm$. The laboratory-made samples had $46.1{\sim}85.5\%$ nominal naproxen concentration. The measurements were made by reflection using a fiber-optic probe and calibration was carried out by partial least square regression (PLSR). Model validation was performed by randomly splitting the data set into calibration and validation data set (63 samples as a calibration data set and 42 samples as a validation data set). The developed NIR calibration gave results comparable to the known values of tablets in a laboratorial manufacturing process with standard error of calibration (SEC) and standard error of prediction (SEP) of $1.06\%\;and\;1.04\%$, respectively. The NIR method showed good accuracy and repeatability. NIR spectroscopic determination in intact tablets allowed the potential use of real time monitoring for a running production process.

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.

Effect of Improving Accuracy for Effective Atomic number (EAN) and Relative Electron Density (RED) extracted with Polynomial-based Calibration in Dual-energy CT

  • Daehong Kim;Il-Hoon Cho;Mi-jo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1017-1023
    • /
    • 2023
  • The purpose of this study was to improve the accuracy of effective atomic number (EAN) and relative electron density (RED) using a polynomial-based calibration method using dual-energy CT images. A phantom composed of 11 tissue-equivalent materials was acquired with dual-energy CT to obtain low- and high-energy images. Using the acquired dual-energy images, the ratio of attenuation of low- and high-energy images for EAN was calibrated based on Stoichiometric, Quadratic, Cubic, Quartic polynomials. EAN and RED were extracted using each calibration method. As a result of the experiment, the average error of EAN using Cubic polynomial-based calibration was minimum. Even in the RED image extracted using EAN, the error of the Cubic polynomial-based RED was minimum. Cubic polynomial-based calibration contributes to improving the accuracy of EAN and RED, and would like to contribute to accurate diagnosis of lesions in CT examinations or quantification of various materials in the human body.