• Title/Summary/Keyword: Error Matrix

Search Result 1,055, Processing Time 0.029 seconds

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Analysis of simulation results using statistical models (통계모형을 이용하여 모의실험 결과 분석하기)

  • Kim, Ji-Hyun;Kim, Bongseong
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.761-772
    • /
    • 2021
  • Simulation results for the comparison of estimators of interest are usually reported in tables or plots. However, if the simulations are conducted under various conditions for many estimators, the comparison can be difficult to be made with tables or plots. Furthermore, for algorithms that take a long time to run, the number of iterations of the simulation is costly to to be increased. The analysis of simulation results using regression models allows us to compare the estimators more systematically and effectively. Since variances in performance measures may vary depending on the simulation conditions and estimators, the heteroscedasticity of the error term should be allowed in the regression model. And multiple comparisons should be made because multiple estimators should be compared simultaneously. We introduce background theories of heteroscedasticity and multiple comparisons in the context of analyzing simulation results. We also present a concrete example.

Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education (일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교)

  • Lee, In-Ja;Park, Chae-Yeon;Lee, Jun-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.

Vehicle ECU Design Incorporating LIN/CAN Vehicle Interface with Kalman Filter Function (LIN/CAN 차량용 인터페이스와 칼만 필터 기능을 통합한 차량용 ECU 설계)

  • Jeong, Seonwoo;Kim, Yongbin;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.762-765
    • /
    • 2021
  • In this paper, an automotive ECU (electronic control unit) with Kalman filter accelerator is designed and implemented. RISC-V is exploited as a processor core. Accelerator for Kalman filter matrix operation, CAN (controller area network) controller for in-vehicle network, and LIN (local interconnect network) controller are designed and embedded. Kalman filter operation consists of time update process and measurement update process. Current state variable and its error covariance are estimated in time update process. Final values are corrected from input measurement data and Kalman gain in measurement update process. Usually floating-point multiplication is exploited in software implementation, but fixed-point multiplier considering accuracy analysis is exploited in this paper to reduce hardware area. In 28nm silicon fabrication, its operating frequency, area, and gate counts are 100MHz, 0.37mm2, and 760k gates, respectively.

The Study of DMZ Wildfire Damage Area Detection Method Using Sentinel-2 Satellite Images (Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구)

  • Lee, Seulki;Song, Jong-Sung;Lee, Chang-Wook;Ko, Bokyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.545-557
    • /
    • 2022
  • This study used high-resolution satellite images and supervised classification technique based on machine learning method in order to detect the areas affected by wildfires in the demilitarized zone (DMZ) where direct access is difficult. Sentinel-2 A/B was used for high-resolution satellite images. Land cover map was calculated based on the SVM supervised classification technique. In order to find the optimal combination to classify the DMZ wildfire damage area, supervised classification according to various kernel and band combinations in the SVM was performed and the accuracy was evaluated through the error matrix. Verification was performed by comparing the results of the wildfire detection based on satellite image and data by the wildfire statistical annual report in 2020 and 2021. Also, wildfire damage areas was detected for which there is no current data in 2022. This is to quickly determine reliable results.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Analysis of agricultural drought status using SAR-based soil moisture imageries (SAR 영상 기반 토양수분을 활용한 농업적 가뭄 분석)

  • Chanyang Sur;Hee-Jin Lee;Yonggwan Lee;Jeehun Chung;Seongjoon Kim;Won-Ho Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.418-418
    • /
    • 2023
  • 가뭄은 농업, 환경 및 사회경제적인 조건에 영향을 미치는 주요 자연 재해로 우리나라는 2015년부터 지속적인 가뭄 상황을 겪고 있다. 지속된 가뭄으로 인해 토양의 수분함량이 변화하여 농작물의 생장 활동 등에 영향을 미쳐 수확량이 낮아질 수 있다. 토양수분은 경사나 토질 등 지형학적인 특성에 따라 민감하게 반응하는 수문인자로, 특성을 광역적으로 정확하게 판단하기 어렵기 때문에 고해상도 원격탐사 자료를 활용하여 토양수분의 거동을 파악하는 연구들이 진행되고 있다. 특히, Synthetic Aperture Radar (SAR) 관측은 작물과 기본적인 토양의 유전체 및 기하학적 특성에 민감하게 반응하기 때문에, 토양수분 및 농업적 가뭄 분석 연구에 활용되고 있다. 본 연구는 2025년 발사될 예정인 C-band SAR 수자원 위성 산출물인 토양수분을 적용한 농업적 가뭄지수산정 알고리즘 기법 개발 연구를 위하여, 수자원 위성과 제원이 비슷한 Sentinel-1 자료를 통해 산정된 토양수분을 활용하여 농업적 가뭄지수인 Soil Moisture Drought Index (SMDI)를 산정하고자 한다. 산정된 SMDI의 검증을 위해 지점 관측된 토양수분 자료와 비교하여 Receiver Operating Characteristic (ROC) 분석 및 error matrix 기법 등을 활용하여 산정된 농업적 가뭄지수의 지역적 적용성을 파악하고자 한다. SAR 자료 기반의 농업적 가뭄지수 산정 알고리즘을 개발함으로써, 향후 제공될 수자원 위성의 자료를 활용한 가뭄 분석 연구에 활용될 수 있을 것으로 판단된다.

  • PDF

Deep learning method for compressive strength prediction for lightweight concrete

  • Yaser A. Nanehkaran;Mohammad Azarafza;Tolga Pusatli;Masoud Hajialilue Bonab;Arash Esmatkhah Irani;Mehdi Kouhdarag;Junde Chen;Reza Derakhshani
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.327-337
    • /
    • 2023
  • Concrete is the most widely used building material, with various types including high- and ultra-high-strength, reinforced, normal, and lightweight concretes. However, accurately predicting concrete properties is challenging due to the geotechnical design code's requirement for specific characteristics. To overcome this issue, researchers have turned to new technologies like machine learning to develop proper methodologies for concrete specification. In this study, we propose a highly accurate deep learning-based predictive model to investigate the compressive strength (UCS) of lightweight concrete with natural aggregates (pumice). Our model was implemented on a database containing 249 experimental records and revealed that water, cement, water-cement ratio, fine-coarse aggregate, aggregate substitution rate, fine aggregate replacement, and superplasticizer are the most influential covariates on UCS. To validate our model, we trained and tested it on random subsets of the database, and its performance was evaluated using a confusion matrix and receiver operating characteristic (ROC) overall accuracy. The proposed model was compared with widely known machine learning methods such as MLP, SVM, and DT classifiers to assess its capability. In addition, the model was tested on 25 laboratory UCS tests to evaluate its predictability. Our findings showed that the proposed model achieved the highest accuracy (accuracy=0.97, precision=0.97) and the lowest error rate with a high learning rate (R2=0.914), as confirmed by ROC (AUC=0.971), which is higher than other classifiers. Therefore, the proposed method demonstrates a high level of performance and capability for UCS predictions.

An Adaptive matrix-based Secure Keypad designed for Rollable and Bendable Display Environments (롤러블 및 벤더블 디스플레이 환경에 적합한 가변행렬 기반 보안 키패드)

  • Dong-Min Choi
    • Journal of Industrial Convergence
    • /
    • v.22 no.2
    • /
    • pp.63-71
    • /
    • 2024
  • Conventional methods like PIN used in conventional smartphone form factor have not considered the variation in display structure or screen size. As a result, when applied to recent variable display-based smartphones, the secret information input unit may get reduced or enlarged, leading to vulnerabilities for social engineering attacks due to deformation of the display area. This study proposes a secure keypad that responds to changes in display size in rollable and bendable smart phones. Firstly, the security problems that may arise when applying classical authentication methods to new form factors were analyzed, and corresponding security requirements were derived. The proposed security keypad addresses the key input error problem that can occur when the screen size is small. The arrangement and size of keys can be deformed with the spacing suitable for input depending on the display size of rollable and bendable smartphones. The study also considered the problem of leaking input information for social engineering attacks by irregularly distributing key input coordinates. The proposed method provides better user experience and security than existing methods and can be used in smartphones of various sizes and shapes.

Determination of Optimal Locations for Measuring Displacements to Adjust Cable Tension Forces of Cable-Stayed Bridges (사장교 시공 중 케이블 장력 보정을 위한 최적 변위계측 위치 결정)

  • Shin, Soobong;Lee, Jung-Yong;Kim, Jae-Cheon;Jung, Kil-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.129-136
    • /
    • 2009
  • The paper presents an algorithm of selecting optimal locations for measuring displacements(OLD) to adjust cable tension forces during the construction of cable-stayed bridges. The rank for optimal locations can be determined from the effective independence distribution vectors(EIDV) that are computed from the Fisher Information Matrices(FIM) formulated with the displacement sensitivities. To examine the efficiency and reliability of the proposed algorithm for determining OLD, a simulation study on a cable-stayed bridge has been carried out. The results using FIM formulated with displacements are compared with those using FIM with displacement sensitivities through the simulation study. The effects of measurement noise and error in cable length on the adjustment of cable tension forces are evaluated statistically by applying the Monte Carlo scheme.