• Title/Summary/Keyword: Error Equation

Search Result 1,572, Processing Time 0.021 seconds

Fundamental Frequency Extraction of Stay Cable based on Energy Equation (에너지방정식에 기초한 사장 케이블 기본진동수 추출)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.125-133
    • /
    • 2008
  • According to longer and longer span, dynamic instability of stay cable should be prevented. Dynamic instability occurs mainly symmetric 1st mode and antisymmetric 1st mode in stay cable. Especially symmetric 1st mode has a lot of influence on sag. Therefore fundamental frequency of stay cable is different from that of taut sting. Irvine, Triantafyllou, Ahn etc. analyzed dynamic behavior of taut cable with sag through analytical technical and their researches give important results for large bounds of Irvine parameter. But each research shows mutually different values out of characteristic (cross-over or mode-coupled) point and each solution of frequency equations of all researchers can be very difficultly found because of their very high non-linearity. Presented study focuses on fundamental frequency of stay cable. Generalized mechanical energy with symmetric 1st mode vibration shape satisfied boundary conditions is evolved by Rayleigh-Ritz method. It is possible to give linear analytic solution within characteristic point. Error by this approach shows only below 3% at characteristic point against existing researches. And taut cable don't exceed characteristic point. I.e. high accuracy, easy solving techniques, and a little bit limitations. Therefore presented study can be announced that it is good study ergonomically.

Development of 3-D Nonlinear Wave Driver Using SPH (SPH을 활용한 3차원 비선형 파랑모형 개발)

  • Cho, Yong Jun;Kim, Gweon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.559-573
    • /
    • 2008
  • In this study, we newly proposed 3-D nonlinear wave driver utilizing the Navier-Stokes Eq. the numerical integration of which is carried out using SPH (Smoothed Particle Hydrodynamics), an internal wave generation with the source function of Gaussian distribution and an energy absorbing layer. For the verification of new 3-D nonlinear wave driver, we numerically simulate the sloshing problem within a parabolic water basin triggered by a Gaussian hump and uniformly inclined water surface by Thacker (1981). It turns out that the qualitative behavior of sloshing caused by relaxing the external force which makes a free surface convex or uniformly inclined is successfully simulated even though phase error is visible and an inundation height shrinks as numerical simulation more proceeds. For the more severe test, we also simulate the nonlinear shoaling and refraction over uniform beach of wedge shape. It is shown that numerically simulated waves are less refracted than the linear counterpart by Hamiltonian ray theory due to nonlinearity, energy dissipation at the bottom and side walls, energy loss induced by breaking, and the hydraulic jump occurring when breaking waves encounter a down-rush by the preceding wave.

Development of a Grid-based Daily Watershed Runoff Model and the Evaluation of Its Applicability (분포형 유역 일유출 모형의 개발 및 적용성 검토)

  • Hong, Woo-Yong;Park, Geun-Ae;Jeong, In-Kyun;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.459-469
    • /
    • 2010
  • This study is to develop a grid-based daily runoff model considering seasonal vegetation canopy condition. The model simulates the temporal and spatial variation of runoff components (surface, interflow, and baseflow), evapotranspiration (ET) and soil moisture contents of each grid element. The model is composed of three main modules of runoff, ET, and soil moisture. The total runoff was simulated by using soil water storage capacity of the day, and was allocated by introducing recession curves of each runoff component. The ET was calculated by Penman-Monteith method considering MODIS leaf area index (LAI). The daily soil moisture was routed by soil water balance equation. The model was evaluated for 930 $km^2$ Yongdam watershed. The model uses 1 km spatial data on landuse, soil, boundary, MODIS LAI. The daily weather data was built using IDW method (2000-2008). Model calibration was carried out to compare with the observed streamflow at the watershed outlet. The Nash-Sutcliffe model efficiency was 0.78~0.93. The watershed soil moisture was sensitive to precipitation and soil texture, consequently affected the streamflow, and the evapotranspiration responded to landuse type.

Comparative Evaluation of Behavior Analysis of Rectangular Jet and Two-dimensional Jet (사각형제트와 2차원제트의 거동해석의 비교 평가)

  • Kwon, Seok Jae;Cho, Hong Yeon;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.641-649
    • /
    • 2006
  • The behavior of a three-dimensional pure rectangular water jet with aspect ratio of 10 was experimentally investigated based on the results of the mean velocity field obtained by PIV. The saddle back distribution was observed in the lateral distribution along the major axis. The theoretical centerline velocity equation derived from the point source concept using the spreading rate for the axisymmetric jet was in good agreement with the measured centerline velocity and gave the division of the potential core region, two-dimensional region, and axisymmetric region. The range of the two-dimensional region divided by the criterion of the theoretical centerline velocity decay for the aspect ratio of 10 was observed to be smaller than that of the transition region. The applicability of the two-dimensional model to the behavior of the rectangular jet with low aspect ratio or the wastewater discharged from a multiport diffuser in the deep water of real ocean may result in significant error in the transition and axisymmetric regions after the two-dimensional region. In the two-dimensional region, the Gaussian constant tended to be conserved, and the spreading rate slightly decreased at the end of the two-dimensional region. The normalized turbulent intensity along the centerline of the jet initially abruptly increased and showed relatively higher intensity for higher Reynolds number.

The Comparative Analysis of Reservoir Capacity of Chungju Dam based on Multi Dimensional Spatial Information (다차원 공간정보 기반의 충주댐 저수용량 비교분석)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.533-540
    • /
    • 2010
  • Dam is very important facility in water supply and flood control. Therefore study needs to analyze reservoir capacity accurately to manage Dam efficiently. This study compared time series reservoir capacity using multi-dimensional spatial information to Chungju Dam reservoir and major conclusions are as follows. First, LiDAR and multi beam echo sounder survey were carried out in land zone and water zone of Dam reservoir area. And calibration process was performed to enhance the accuracy of survey data and it could be constructed that multi dimensional spatial information which was clearly satisfied with the standard of tolerance error by validation with ground control points. Reservoir capacity by water level was calculated using triangle irregular network from detailed topographic data that was constructed by linked with airborne LiDAR and multi beam echo sounder data, and curve equation of reservoir capacity was developed through regression analysis in 2008. In the comparison of the reservoir capacity of 2008 with those of 1986 and 1996, the higher water level goes, total reservoir capacity of 2008 showed decrease because of the increase of sediment in reservoir. Also, erosion and sediment area could be analyzed through calculating the reservoir capacity by the range of water level. Especially the range of water level as 130.0~135.0 which is the upper part of average water level, showed the highest erosion characteristics during 1986~2008 and 1996~2008 and it is considered that the erosion of reservoir slant by heavy rainfall is major reason.

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

Analysis of Optimal Index for Heat Morbidity (온열질환자 예측을 위한 최적의 지표 분석)

  • Sanghyuck Kim;Minju Song;Seokhwan Yun;Dongkun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • The purpose of this study is to select and predict optimal heatwave indices for describing and predicting heat-related illnesses. Regression analysis was conducted using Heat-related illness surveillance system data for a number of heat-related illnesses and meteorological data from the Korea Meteorological Administration's Automatic Weather Station (AWS) for the period from 2021 to 2023. Daily average temperature, daily maximum temperature, daily average Wet Bulb Globe Temperature (WBGT), and daily maximum WBGT values were calculated and analyzed. The results indicated that among the four indicators, the daily maximum WBGT showed the highest suitability with an R2 value of 0.81 and RMSE of 0.98, with a threshold of 29.94 Celsius. During the entire analysis period, there were a total of 91 days exceeding this threshold, resulting in 339 cases of heat-related illnesses. Predictions of heat-related illness cases from 2021 to 2023 using the regression equation for daily maximum WBGT showed an accuracy with less than 10 cases of error annually, demonstrating a high level of precision. Through continuous research and refinement of data and analysis methods, it is anticipated that this approach could contribute to predicting and mitigating the impact of heatwaves.

Understanding Privacy Infringement Experiences in Courier Services and its Influence on User Psychology and Protective Action From Attitude Theory Perspective (택배 서비스 이용자의 프라이버시 침해 경험이 심리와 행동에 미치는 영향에 대한 이해: 태도이론 측면)

  • Se Hun Lim;Dan J. Kim;Hyeonmi Yoo
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.99-120
    • /
    • 2023
  • Courier services users' experience of violating privacy affects psychology and behavior of protecting personal privacy. Depending on what privacy infringement experience (PIE) of courier services users, learning about perceived privacy infringement incidents is made, recognition is formed, affection is formed, and behavior is appeared. This paradigm of changing in privacy psychologies of courier services users has an important impact on predicting responses of privacy protective action (PPA). In this study, a theoretical research framework are developed to explain the privacy protective action (PPA) of courier services users by applying attitude theory. Based on this framework, the relationships among past privacy infringement experience (PIE), perceived privacy risk (PPR), privacy concerns (i.e., concerns in unlicensed secondary use (CIUSU), concerns in information error (CIE), concerns in improper access (CIA), and concern in information collection (CIC), and privacy protective action (PPA) are analyzed. In this study, the proposed research model was surveyed by people with experience in using courier services and was analyzed for finding relationships among research variables using structured an equation modeling software, SMART-PLS. The empirical results show the causal relationships among PIE, PPR, privacy concerns (CIUSU, CIE, CIA, and CIC), and PPA. The results of this study provide useful theoretical implications for privacy management research in courier services, and practical implications for the development of courier services business model.

Modeling Residual Water in the Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell and Analyzing Performance Changes (고분자 전해질막 연료전지의 기체확산층 내부 잔류수 모델링 및 성능변화해석)

  • Jiwon Jang;Junbom Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells have the advantage of low operating temperatures and fast startup and response characteristics compared to others. Simulation studies are actively researched because their cost and time benefits. In this study, the resistance of water residual in the gas diffusion layer (GDL) of the unit cell was added to the existing equation to compare the actual data with the model data. The experiments were conducted with a 25 cm2 unit cell, and the samples were separated into stopping times of 0, 10, and 60 minutes following primary impedance measurement, activation, and polarization curve data acquisition. This gives 0, 10, and 60 minutes for the residual water in the GDL to evaporate. Without the rest period, the magnitude of the performance improvement was not significantly different at the same potential and flow rate, but the rest period did improve the performance of the membrane electrode assembly when measuring impedance. By changing the magnitude of the resistance reduction to an overvoltage, the voltage difference between the fuel cell model with and without residual water was compared, and the error rate in the high current density region, which is dominated by concentration losses, was reduced.

Allometric equation for estimating aboveground biomass of Acacia-Commiphora forest, southern Ethiopia

  • Wondimagegn Amanuel;Chala Tadesse;Moges Molla;Desalegn Getinet;Zenebe Mekonnen
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.196-206
    • /
    • 2024
  • Background: Most of the biomass equations were developed using sample trees collected mainly from pan-tropical and tropical regions that may over- or underestimate biomass. Site-specific models would improve the accuracy of the biomass estimates and enhance the country's measurement, reporting, and verification activities. The aim of the study is to develop site-specific biomass estimation models and validate and evaluate the existing generic models developed for pan-tropical forest and newly developed allometric models. Total of 140 trees was harvested from each diameter class biomass model development. Data was analyzed using SAS procedures. All relevant statistical tests (normality, multicollinearity, and heteroscedasticity) were performed. Data was transformed to logarithmic functions and multiple linear regression techniques were used to develop model to estimate aboveground biomass (AGB). The root mean square error (RMSE) was used for measuring model bias, precision, and accuracy. The coefficient of determination (R2 and adjusted [adj]-R2), the Akaike Information Criterion (AIC) and the Schwarz Bayesian information Criterion was employed to select most appropriate models. Results: For the general total AGB models, adj-R2 ranged from 0.71 to 0.85, and model 9 with diameter at stump height at 10 cm (DSH10), ρ and crown width (CW) as predictor variables, performed best according to RMSE and AIC. For the merchantable stem models, adj-R2 varied from 0.73 to 0.82, and model 8) with combination of ρ, diameter at breast height and height (H), CW and DSH10 as predictor variables, was best in terms of RMSE and AIC. The results showed that a best-fit model for above-ground biomass of tree components was developed. AGBStem = exp {-1.8296 + 0.4814 natural logarithm (Ln) (ρD2H) + 0.1751 Ln (CW) + 0.4059 Ln (DSH30)} AGBBranch = exp {-131.6 + 15.0013 Ln (ρD2H) + 13.176 Ln (CW) + 21.8506 Ln (DSH30)} AGBFoliage = exp {-0.9496 + 0.5282 Ln (DSH30) + 2.3492 Ln (ρ) + 0.4286 Ln (CW)} AGBTotal = exp {-1.8245 + 1.4358 Ln (DSH30) + 1.9921 Ln (ρ) + 0.6154 Ln (CW)} Conclusions: The results demonstrated that the development of local models derived from an appropriate sample of representative species can greatly improve the estimation of total AGB.