• Title/Summary/Keyword: Error Cost Function

Search Result 250, Processing Time 0.027 seconds

Application of Subarray Averaging and Entropy Minimization Algorithm to Stepped-Frequency ISAR Autofocus (부배열 평균과 엔트로피 최소화 기법을 이용한 stepped-frequency ISAR 자동초점 기법 성능 향상 연구)

  • Jeong, Ho-Ryung;Kim, Kyung-Tae;Lee, Dong-Han;Seo, Du-Chun;Song, Jeong-Heon;Choi, Myung-Jin;Lim, Hyo-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.158-163
    • /
    • 2008
  • In inverse synthetic aperture radar (ISAR) imaging, An ISAR autofocusing algorithm is essential to obtain well-focused ISAR images. Traditional methods have relied on the approximation that the phase error due to target motion is a function of the cross-range dimension only. However, in the stepped-frequency radar system, it tends to become a two-dimensional function of both down-range and cross-range, especially when target's movement is very fast and the pulse repetition frequency (PRF) is low. In order to remove the phase error along down-range, this paper proposes a method called SAEM (subarray averaging and entropy minimization) [1] that uses a subarray averaging concept in conjunction with the entropy cost function in order to find target motion parameters, and a novel 2-D optimization technique with the inherent properties of the proposed entropy-based cost function. A well-focused ISAR image can be obtained from the combination of the proposed method and a traditional autofocus algorithm that removes the phase error along the cross-range dimension. The effectiveness of this method is illustrated and analyzed with simulated targets comprised of point scatters.

  • PDF

Maximization of Zero-Error Probability for Adaptive Channel Equalization

  • Kim, Nam-Yong;Jeong, Kyu-Hwa;Yang, Liuqing
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.459-465
    • /
    • 2010
  • A new blind equalization algorithm that is based on maximizing the probability that the constant modulus errors concentrate near zero is proposed. The cost function of the proposed algorithm is to maximize the probability that the equalizer output power is equal to the constant modulus of the transmitted symbols. Two blind information-theoretic learning (ITL) algorithms based on constant modulus error signals are also introduced: One for minimizing the Euclidean probability density function distance and the other for minimizing the constant modulus error entropy. The relations between the algorithms and their characteristics are investigated, and their performance is compared and analyzed through simulations in multi-path channel environments. The proposed algorithm has a lower computational complexity and a faster convergence speed than the other ITL algorithms that are based on a constant modulus error. The error samples of the proposed blind algorithm exhibit more concentrated density functions and superior error rate performance in severe multi-path channel environments when compared with the other algorithms.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

Simulation of Whole Body Posture during Asymmetric Lifting (비대칭 들기 작업의 3차원 시뮬레이션)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 2002
  • In this study, an asymmetric lifting posture prediction model was developed, which was a three-dimensional model with 12 links and 23 degrees of freedom open kinematic chains. Although previous researchers have proposed biomechanical, psychophysical, or physiological measures as cost functions, for solving redundancy, they lack in accuracy in predicting actual lifting postures and most of them are confined to the two-dimensional model. To develop an asymmetric lifting posture prediction model, we used the resolved motion method for accurately simulating the lifting motion in a reasonable time. Furthermore, in solving the redundant problem of the human posture prediction, a moment weighted Joint Range Availability (JRA) was used as a cost function in order to consider dynamic lifting. However, it is known that the moment weighted JRA as a cost function predicted the lower extremity and L5/S1 joint motions better than the upper extremities, while the constant weighted JRA as a cost function predicted the latter better than the former. To compensate for this, we proposed a hybrid moment weighted JRA as a new cost function with moment weighted for only the lower extremity. In order to validate the proposed cost function, the predicted and real lifting postures for various lifting conditions were compared by using the root mean square(RMS) error. This hybrid JRA reduced RMS more than the previous cost functions. Therefore, it is concluded that the cost function of a hybrid moment weighted JRA can be used to predict three-dimensional lifting postures. To compare with the predicted trajectories and the real lifting movements, graphical validations were performed. The results also showed that the hybrid moment weighted cost function model was found to have generated the postures more similar to the real movements.

Improvement of the Stratospheric Wind Analysis with the Climatological Constraint in the Global Three-Dimensional Variational Assimilation at Korea Meteorological Administration (3차원 변분법의 제한조건 적용을 통한 기상청 전지구 모델의 성층권 바람장 개선)

  • Joo, Sangwon;Lee, Woo-Jin
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2007
  • A constraint based on climatology is introduced to the cost function of the three-dimensional variational assimilation (3dVar) to correct the error of the zonal mean wind structure in the global data assimilation system at Korea Meteorological Administration (KMA). The revised cost function compels the analysis fit to the chosen climatology while keeping the balance between the variables in the course of analysis. The constraint varies selectively with the vertical level and the horizontal scale of the motion. The zonally averaged wind field from European Centre for Medium-Range Weather Forecasts Re-Analysis 40 (ERA-40) is used as a climatology field in the constraint. The constraint controls only the zonally averaged stratospheric long waves with total wave number less than 20 to fix the error of the large scale wind field in the stratosphere. The constrained 3dVar successfully suppresses the erroneous westerly in the stratospheric analysis promptly, and has been applied on the operational global 3dVar system at KMA.

Visual Servoing of a Wheeled Mobile Robot with the Obstacle Avoidance based on the Nonlinear Optimization using the Modified Cost Function (수정된 비용함수를 이용한 비선형 최적화 방법 기반의 이동로봇의 장애물 회피 비주얼 서보잉)

  • Kim, Gon-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2498-2504
    • /
    • 2009
  • The fundamental research for the mobile robot navigation using the numerical optimization method is presented. We propose an image-based visual servo navigation algorithm for a wheeled mobile robot utilizing a ceiling mounted camera. For the image-based visual servoing, we define the composite image Jacobian which represents the relationship between the speed of wheels of a mobile robot and the robot's overall speed in the image plane. The rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot in the image plane using the composite image Jacobian. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the cost function with the image error between the goal position and the position of a mobile robot. In order to avoid the obstacle, the modified cost function is proposed which is composed of the image error between the position of a mobile robot and the goal position and the distance between the position of a mobile robot and the position of the obstacle. The performance was evaluated using the simulation.

A Maximum Likelihood Estimator Based Tracking Algorithm for GNSS Signals

  • Won, Jong-Hoon;Pany, Thomas;Eissfeller, Bernd
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper. With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. The first method is derived without any limitation on time consumption, while the second method is proposed for a time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the estimated signal parameters.

  • PDF

A study on the lifting posture predictivity of biomechanical cost functions (인체역학적 비용함수들의 lifting 자세 예측도 비교)

  • 최재호;박우진;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.147-150
    • /
    • 1996
  • Human posture prediction and motion simulation methods try to solve inverse kinematic problems using the optimization technique based on the concept of minimum principle. It is very important to select a cost function which relfects the human posture acurately. In this study, lifting postures were predicted using the five biomechanical cost functions and compared with real human postures in order to evaluate the predictivities of the cost functions. The result showed that all the biomechanical cost functions used in this study could not predict lifting postures accurately. The cost function which minimizes the sum of joint moments showed the smallest mean prediction error, while the one which minimizes the MUR showed statistically better performance.

  • PDF

A Canonical Correlation Analysis of the Relationship between Menu Management Variables and Performance in Contract-Foodservice Operations (위탁 급식 점포의 메뉴 운영 요인과 성과의 연관성에 관한 연구)

  • Park, Ju-Yeon;Kim, Tae-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.1089-1098
    • /
    • 2008
  • The principal objective of this study was to reveal the relationship between the menu management indicators and menu performance indicators in contract-foodservice operations. Menu indicators differed according to the type of business, type of contract, type of serving, and number of service lines. In accordance with the results of our correlation analysis, we noted significant correlations between menu performance indicators and menu management indicators. The first of these was the correlation between the food cost ration and meal counts, food loss, and the use of prepared vegetables. The second of these was the correlation between food cost per meal and forecasting error, food loss, and inventory turnover. The last of these correlations was the negative correlation between menu CSI(customer satisfaction index) and the use of prepared vegetables. According to the results of our canonical correlation analysis, 2 significant functions were identified. In the first function, we noted significant correlations between meal counts, use of prepared vegetables, food loss, and food cost ratio. Additionally, we noted significant correlations between forecasting error, inventory turnover, food loss, and food cost per meal in the second function. Menu management indicators had no influence on customer satisfaction.

  • PDF

Adaptive Error Concealment Method Using Affine Transform in the Video Decoder (비디오 복호기에서의 어파인 변환을 이용한 적응적 에러은닉 기법)

  • Kim, Dong-Hyung;Kim, Seung-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.712-719
    • /
    • 2008
  • Temporal error concealment indicates the algorithm that restores the lost video data using temporal correlation between previous frame and current frame with lost data. It can be categorized into the methods of block-based and pixel-based concealment. The proposed method in this paper is for pixel-based temporal error concealment using affine transform. It outperforms especially when the object or background in lost block has geometric transform which can be modeled using affine transform, that is, rotation, magnification, reduction, etc. Furthermore, in order to maintain good performance even though one or more motion vector represents the motion of different objects, we defines a cost function. According to cost from the cost function, the proposed method adopts affine error concealment adaptively. Simulation results show that the proposed method yields better performance up to 1.9 dB than the method embedded in reference software of H.264/AVC.