• Title/Summary/Keyword: Error Compensation

Search Result 1,343, Processing Time 0.031 seconds

Real-Time Compensation of Errors Caused by the Flux Density Non-uniformity for a Magnetically Suspended Sensitive Gyroscope

  • Chaojun, Xin;Yuanwen, Cai;Yuan, Ren;Yahong, Fan;Yongzhi, Su
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by the non-uniformity of the air-gap flux density in a MSSG, this paper proposes a novel compensation method based on measuring and modeling of the air-gap flux density. The angular velocity measurement principle and the structure of the MSSG are described, and then the characteristic of the air-gap flux density has been analyzed in detail. Next, to compensate the flux density distribution error and improve the measurement accuracy of the MSSG, a real-time compensation method based on the online measurement with hall probes is designed. The common issues caused by the non-uniformity of the air-gap flux density can be effectively resolved by the proposed method in high-precision magnetically suspended configurations. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

A Study on the Analysis of Error Sources and Error Compensation in Machine Tools (공작기계 오차 요인의 분석 및 보정에 관한 연구)

  • Kim, Ki-Hwan;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.185-192
    • /
    • 2017
  • Machine tool errors can be divided into geometric error, thermal deformation error, and machining error. In this study, the influence of each error on the total error and the relative size of each error are quantitatively analyzed in 2D machining. The thermal deformation error and the machining error caused a relatively large error compared to the geometric error, which is directly related to the machining accuracy. In order to eliminate the error factors, the possibility of error compensation was examined by analyzing the measured error profile shape. As a result, about 40 ~ 50% error compensation was achieved for each error factor. Through this study, it is possible to construct a basic data base on machining, and it is expected that it will be able to compensate the machining error from the viewpoint of users.

Compensation of Current Offset Error in Half-Bridge PWM Inverter for Linear Compressor

  • Kim, Dong-Youn;Im, Won-Sang;Hwang, Seon-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1593-1600
    • /
    • 2015
  • This paper proposes a novel compensation algorithm of current offset error for single-phase linear compressor in home appliances. In a half-bridge inverter, current offset error may cause unbalanced DC-link voltage when the DC-link is comprised of two serially connected capacitors. To compensate the current measurement error, the synchronous reference frame transformation is used for detecting the measurement error. When an offset error occurs in the output current of the half-bridge inverter, the d-axis current has a ripple with frequency equal to the fundamental frequency. With the use of a proportional-resonant controller, the ripple component can be removed, and offset error can be compensated. The proposed compensation method can easily be implemented without much computation and additional hardware circuit. The validity of the proposed algorithm is verified through experimental results.

Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System) (광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정)

  • Hong, Yoo-Pyo;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.

An Improved Phase Error Compensation for an Absolute Position Detector using Table Method (테이블 방법을 이용한 절대위치 검출기에 대한 개선된 위상 오차 보상)

  • Ahn, Ki-Ho;Kim, See-Hyun;Yang, Yoon-Gi;Lee, Chang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.975-981
    • /
    • 2010
  • Existing error compensation method of industrial electronic absolute displacement detector only depends on skilled engineers. This paper proposes a new table method in order to automatize error compensation. An waveform changes according to the parallel resistance for each pole were tabularized and four waveforms were superimposed to minimize total phase error. These process was verified using simulink. As a result of applying proposed method to the real sensor, peak to peak error was reduced from $3.428^{\circ}$ to $0.879^{\circ}$. In this case, compensation resistance is $4.7k\Omega$ in B pole and $20k\Omega$ in C pole. This compensation rate is comparable to skilled engineers, and it takes 0.8 second which is far shorter than 15 minutes when expert does.

Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors (2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상)

  • Do-Hyun, Kim;Sang-Hoon, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

Speech Recognition Error Compensation using MFCC and LPC Feature Extraction Method (MFCC와 LPC 특징 추출 방법을 이용한 음성 인식 오류 보정)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.137-142
    • /
    • 2013
  • Speech recognition system is input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Therefore, in this paper, we propose a speech recognition error correction method using phoneme similarity rate and reliability measures based on the characteristics of the phonemes. Phonemes similarity rate was phoneme of learning model obtained used MFCC and LPC feature extraction method, measured with reliability rate. Minimize the error to be unrecognized by measuring the rate of similar phonemes and reliability. Turned out to error speech in the process of speech recognition was error compensation performed. In this paper, the result of applying the proposed system showed a recognition rate of 98.3%, error compensation rate 95.5% in the speech recognition.

Compensation of the rotor time constant of induction motor using current error feedback (전류오차 궤환을 이용한 유도전동기 회전자 시정수 보상)

  • 김승민;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.195-198
    • /
    • 1997
  • This paper proposes the effective compensation method of the rotor time constant of induction motor. An indirect vector control method is highly dependent on the motor parameters. To solve the problem of performance degradation due to parameter variation in an indirect vector control of induction motor, we compensate the rotor time constant by current error feedback. The proposed method is a simple on-line rotor time constant compensation method using the information from terminal voltages and currents. As the current error, difference between current command and estimated current, approaches to zero, the value of rotor time constant in an indirect vector controller follows the real value of induction motor. This scheme is valid transient region as well as steady state region regardless of low or high speed. This method is verified by computer simulation. For this, we constructed the simulation model of induction motor, indirect vector controller and current regulated PWM (CRPWM) voltage source inverter (VSI) using SIMULINK in MATLAB.

  • PDF

Fault Diagnosis and Recovery of a Thermal Error Compensation System in a CNC Machine Tool (CNC 공작기계에서 열변형 오차 보정 시스템의 고장진단 및 복구)

  • 황석현;이진현;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.135-141
    • /
    • 2000
  • The major role of temperature sensors in thermal error compensation system of machine tools is improving machining accuracy by supplying reliable temperature data on the machine structure. This paper presents a new method for fault diagnosis of temperature sensors and recovery of faulted data to establish the reliability of thermal error compensation system. The detection of fault and its location is based on the correlation coefficients among temperature data from the sensors. The multiple linear regression model which is prepared using complete normal data is also used fur the recovery of faulted data. The effectiveness of this method was tested by comparing the computer simulation results and measured data in a CNC machining center.

  • PDF

Enhancement of a parabolic face working accuracy using volumetric error compensation of NC milling machine (NC 밀링머신의 Volumetric 오차보상을 통한 포물면 가공의 정밀도 향상)

  • 이찬호;정을섭;이응석;김성청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.917-921
    • /
    • 2000
  • One of the major limitations of productivity and quality in machining is machining accuracy of the machine tools. The machining accuracy is affected by geometric, volumetric errors of the machine tools. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the generation of the parabolic face profile. And the method is verified by the parabolic face machining experiment with a vertical three axes NC milling machine. After this study, we will inspect using On-machine measurement and study the repetitive machining by a compensated path

  • PDF