• Title/Summary/Keyword: Error Classification

Search Result 830, Processing Time 0.033 seconds

A Study on the Voiced, Unvoiced and Silence Classification (유.무성음 및 묵음 식별에 관한 연구)

  • 김명환
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.73-77
    • /
    • 1984
  • This paper reports on a Voiced-Unvoiced-Silence Classification of speech for Korean Speech Recognition. In this paper, it is describe a method which uses a Pattern Recognition Technique for classifying a given speech segment into the three classes. Best result is obtained with the combination using ZCR, P1, Ep and classification error rate is less than 1%.

  • PDF

An Application of the Balanced Quadratic Classification Rule on the Discriminant Analysis in Growth Curve Model (성장곡선모형의 판별분석에서 균형이차분류법의 적용)

  • Shim, Kyu-Bark
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.2
    • /
    • pp.53-67
    • /
    • 1995
  • The problem considered here is to find the optimal discriminant analysis method in growth curve model. It has been studied how to find correct prior probability for the effective classification in discriminant analysis. We use the balanced condition to calculate prior probability. From the informative simulation study, new classification rule for the growth curve model is suggested. The suggested classification rule has better classification result than the other previously suggested method in terms of error rate criterion.

  • PDF

Classification of Diphthongs using Acoustic Phonetic Parameters (음향음성학 파라메터를 이용한 이중모음의 분류)

  • Lee, Suk-Myung;Choi, Jeung-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.167-173
    • /
    • 2013
  • This work examines classification of diphthongs, as part of a distinctive feature-based speech recognition system. Acoustic measurements related to the vocal tract and the voice source are examined, and analysis of variance (ANOVA) results show that vowel duration, energy trajectory, and formant variation are significant. A balanced error rate of 17.8% is obtained for 2-way diphthong classification on the TIMIT database, and error rates of 32.9%, 29.9%, and 20.2% are obtained for /aw/, /ay/, and /oy/, for 4-way classification, respectively. Adding the acoustic features to widely used Mel-frequency cepstral coefficients also improves classification.

Classification of Plants into Families based on Leaf Texture

  • TREY, Zacrada Francoise;GOORE, Bi Tra;BAGUI, K. Olivier;TIEBRE, Marie Solange
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.205-211
    • /
    • 2021
  • Plants are important for humanity. They intervene in several areas of human life: medicine, nutrition, cosmetics, decoration, etc. The large number of varieties of these plants requires an efficient solution to identify them for proper use. The ease of recognition of these plants undoubtedly depends on the classification of these species into family; however, finding the relevant characteristics to achieve better automatic classification is still a huge challenge for researchers in the field. In this paper, we have developed a new automatic plant classification technique based on artificial neural networks. Our model uses leaf texture characteristics as parameters for plant family identification. The results of our model gave a perfect classification of three plant families of the Ivorian flora, with a determination coefficient (R2) of 0.99; an error rate (RMSE) of 1.348e-14, a sensitivity of 84.85%, a specificity of 100%, a precision of 100% and an accuracy (Accuracy) of 100%. The same technique was applied on Flavia: the international basis of plants and showed a perfect identification regression (R2) of 0.98, an error rate (RMSE) of 1.136e-14, a sensitivity of 84.85%, a specificity of 100%, a precision of 100% and a trueness (Accuracy) of 100%. These results show that our technique is efficient and can guide the botanist to establish a model for many plants to avoid identification problems.

Speech/Music Signal Classification Based on Spectrum Flux and MFCC For Audio Coder (오디오 부호화기를 위한 스펙트럼 변화 및 MFCC 기반 음성/음악 신호 분류)

  • Sangkil Lee;In-Sung Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.239-246
    • /
    • 2023
  • In this paper, we propose an open-loop algorithm to classify speech and music signals using the spectral flux parameters and Mel Frequency Cepstral Coefficients(MFCC) parameters for the audio coder. To increase responsiveness, the MFCC was used as a short-term feature parameter and spectral fluxes were used as a long-term feature parameters to improve accuracy. The overall voice/music signal classification decision is made by combining the short-term classification method and the long-term classification method. The Gaussian Mixed Model (GMM) was used for pattern recognition and the optimal GMM parameters were extracted using the Expectation Maximization (EM) algorithm. The proposed long-term and short-term combined speech/music signal classification method showed an average classification error rate of 1.5% on various audio sound sources, and improved the classification error rate by 0.9% compared to the short-term single classification method and 0.6% compared to the long-term single classification method. The proposed speech/music signal classification method was able to improve the classification error rate performance by 9.1% in percussion music signals with attacks and 5.8% in voice signals compared to the Unified Speech Audio Coding (USAC) audio classification method.

A Study on the Analysis of Human-errors in Major Chemical Accidents in Korea (국내 화학사고의 휴먼에러 기반 분석에 관한 연구)

  • Park, Jungchul;Baek, Jong-Bae;Lee, Jun-won;Lee, Jin-woo;Yang, Seung-hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • This study analyses the types, related operations, facilities, and causes of chemical accidents in Korea based on the RISCAD classification taxonomy. In addition, human error analysis was carried out employing different human error classification criteria. Explosion and fire were major accident types, and nearly half of the accidents occurred during maintenance operation. In terms of related facility, storage devices and separators were the two most frequently involved ones. Results of the human error-based analysis showed that latent human errors in management level are involved in many accidents as well as active errors in the field level. Action errors related to unsafe behavior leads to accidents more often compared with the checking behavior. In particular, actions missed and inappropriate actions were major problems among the unsafe behaviors, which implicates that the compliance with the work procedure should be emphasized through education/training for the workers and the establishment of safety culture. According to the analysis of the causes of the human error, the frequency of skill-based mistakes leading to accidents were significantly lower than that of rule-based and knowledge based mistakes. However, there was limitation in the analysis of the root causes due to limited information in the accident investigation report. To solve this, it is suggested to adopt advanced accident investigation system including the establishment of independent organization and improvement in regulation.

Minimum Classification Error Training to Improve Discriminability of PCMM-Based Feature Compensation (PCMM 기반 특징 보상 기법에서 변별력 향상을 위한 Minimum Classification Error 훈련의 적용)

  • Kim Wooil;Ko Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.58-68
    • /
    • 2005
  • In this paper, we propose a scheme to improve discriminative property in the feature compensation method for robust speech recognition under noisy environments. The estimation of noisy speech model used in existing feature compensation methods do not guarantee the computation of posterior probabilities which discriminate reliably among the Gaussian components. Estimation of Posterior probabilities is a crucial step in determining the discriminative factor of the Gaussian models, which in turn determines the intelligibility of the restored speech signals. The proposed scheme employs minimum classification error (MCE) training for estimating the parameters of the noisy speech model. For applying the MCE training, we propose to identify and determine the 'competing components' that are expected to affect the discriminative ability. The proposed method is applied to feature compensation based on parallel combined mixture model (PCMM). The performance is examined over Aurora 2.0 database and over the speech recorded inside a car during real driving conditions. The experimental results show improved recognition performance in both simulated environments and real-life conditions. The result verifies the effectiveness of the proposed scheme for increasing the performance of robust speech recognition systems.

Instagram image classification with Deep Learning (딥러닝을 이용한 인스타그램 이미지 분류)

  • Jeong, Nokwon;Cho, Soosun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.61-67
    • /
    • 2017
  • In this paper we introduce two experimental results from classification of Instagram images and some valuable lessons from them. We have tried some experiments for evaluating the competitive power of Convolutional Neural Network(CNN) in classification of real social network images such as Instagram images. We used AlexNet and ResNet, which showed the most outstanding capabilities in ImageNet Large Scale Visual Recognition Challenge(ILSVRC) 2012 and 2015, respectively. And we used 240 Instagram images and 12 pre-defined categories for classifying social network images. Also, we performed fine-tuning using Inception V3 model, and compared those results. In the results of four cases of AlexNet, ResNet, Inception V3 and fine-tuned Inception V3, the Top-1 error rates were 49.58%, 40.42%, 30.42%, and 5.00%. And the Top-5 error rates were 35.42%, 25.00%, 20.83%, and 0.00% respectively.

Evaluating Predictive Ability of Classification Models with Ordered Multiple Categories

  • Oong-Hyun Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.383-395
    • /
    • 1999
  • This study is concerned with the evaluation of predictive ability of classification models with ordered multiple categories. If categories can be ordered or ranked the spread of misclassification should be considered to evaluate the performance of the classification models using loss rate since the apparent error rate can not measure the spread of misclassification. Since loss rate is known to underestimate the true loss rate the bootstrap method were used to estimate the true loss rate. thus this study suggests the method to evaluate the predictive power of the classification models using loss rate and the bootstrap estimate of the true loss rate.

  • PDF

An Analysis of Land Cover Classification Methods Using IKONOS Satellite Image (IKONOS 영상을 이용한 토지피복분류 기법 분석)

  • Kang, Nam Yi;Pak, Jung Gi;Cho, Gi Sung;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.65-71
    • /
    • 2012
  • Recently the high-resolution satellite images are helpfully using the land cover, status data for the natural resources or environment management. The effective satellite analysis process for these satellite images that require high investment can be increase the effectiveness has become increasingly important. In this Study, the statistical value of the training data is calculated and analyzed during the preprocessing. Also, that is explained about the maximum likelihood classification of traditional classification method, artificial neural network (ANN) classification method and Support Vector Machines(SVM) classification method and then the IKONOS high-resolution satellite imagery was produced the land cover map using each classification method. Each result data had to analyze the accuracy through the error matrix. The results of this study prove that SVM classification method can be good alternative of the total accuracy of about 86% than other classification method.