• Title/Summary/Keyword: Erosion test

Search Result 395, Processing Time 0.022 seconds

Influence of Shot Peening on Cavitation Erosion Resistance of Gray Cast Iron (쇼트피닝이 회주철의 캐비테이션 침식 저항성에 미치는 영향)

  • Park, Il-Cho
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.143-151
    • /
    • 2021
  • In this study, optimal shot peening process conditions were investigated for improving the cavitation erosion resistance of gray cast iron under a marine environment. Shot peening was performed with variables of injection pressure and injection time. The durability was then evaluated through cavitation erosion test which was conducted according to the modified ASTM G-32 standard. The tendency of cavitation erosion damage according to shot peening process condition was investigated through weight loss rate, surface and cross-sectional analysis of the specimen before and after the test. As a result, the shot peening process condition that could minimize cavitation erosion was when the injection pressure was the lowest and when the injection time was the shortest. This was because the flake graphite exposed on the gray cast iron surface could be easily removed under such condition. Therefore, the notch effect can be prevented by surface modification. In addition, the cavitation erosion damage mechanism of gray cast iron was discussed in detail.

Erosion Behavior of SiC Coated C/C Composites with Condition of Combustion Test

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Jae-Won
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.133-139
    • /
    • 2003
  • Carbon/carbon composites are ideal candidates for a number of aerospace applications including structural materials for advanced vehicles, leading edges, structures of re-entry and hypersonic vehicles and propulsion systems. One serious defect for such application of the carbon/carbon composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating was employed to protect the composites from oxidation. It is mechanically and chemically stable under extreme thermal and oxidative environments, provides good adhesion to the substrate, and offers good thermal shock resistance. The SiC layer on the nozzle machined from the carbon/carbon composites was formed by pack-cementation method. Then, erosion characteristic of SiC coated carbon/carbon nozzle was examined by combustion test using a liquid rocket motor. The erosion rates were measured as function of combustion pressure, ratio of oxygen to fuel, combustion time, density of the composites and geometry of reinforced carbon fibre in the composites. The morphology change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

  • PDF

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham;Min-Kyung Jeon;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2023
  • Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.

Development and demonstration of an erosion-corrosion damage simulation apparatus (배관 침부식 손상 연속모사 장비 개발 및 실증)

  • Nam, Won Chang;Ryu, Kyung Ha;Kim, Jae Hyoung
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

Preparation and Erosion Properties of Reaction-Bonded SiC Reinforced by Carbon Fiber (탄소섬유로 강화된 반응소결 SiC 제조 및 Erosion 특성)

  • 송진웅;임대순;김형욱
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.59-67
    • /
    • 1999
  • Three kinds of reation-bonded SiC that reaction-bonded SiC(RBSC), RBSC reinforced by carbon fiber and RBSC reinforced by activated carbon fiber were prepared for investigating the change of erosion properties. The characteristics of microstructures and the phases have been investigated by using scanning electron microscope and XRD analysis. The hardness test toughness test and erosion test was carried out. In the cases with no carbon fiber, those kind of specimens had the highest value of hardness and the lowest value of toughness. With the increase of carbon fiber content the hardness and the weight loss were decreased, but the toughness was increased in the cases with carbon fiber. In the cases with activated carbon fiber specimens had the highest value of toughness and the lowest value of hardness with 30% contents of activated carbon fiber.

Arc Erosion Properties of W/WC contacts (W/WC 계 접점의 arc 마모특성)

  • Lee, Hee-Woong;Byun, Woo-Bong;Han, Se-Won
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.376-378
    • /
    • 1988
  • W/CE system contacts were manufactured f a press sinter-infiltrate process to compare with their arc erosion mechanism. The results of arc switching test show that erosion rate of contacts is dependence of test current and there is difference in the erosion rates between W contacts and WC contacts. At high current of 1000A erosion rate of W contacts is critically increased by formation of surface cracks. In especial arc anti-erosion is improved by Hi additive.

  • PDF

A Study on the Erosion-Resistant Cermet Film Coating using the Detonation Spray Method (폭발용사에 의한 내에로젼성 서멧 피막 코팅에 관한 연구)

  • 김현근;남인철;오재환
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The properties of the detonation sprayed cermet coating are investigated through the mechanical, corrosion and erosion test. The test results are also compared with the properties of the substrate materials, STS 329J1, dual phase stainless steel and the plasma sprayed cermet coatings. The two kinds of carbide cermet power, WC+NiCr, Cr$_3$C$_2$+NiCr were used in this experiment. The experimental results showed that the anti-corrosive and anti-erosive properties of the detonation sprayed cermet coatings are superior to the plasma sprayed cermet coatings. The WC+NiCr cermet coating appears to be more effective than Cr$_3$C$_2$+NiCr cermet coating in abrasive erosion environment, whereas the Cr$_3$C$_2$+NiCr cermet coatings are more effective in cavitation erosion environment.

  • PDF

Durability of Nozzle Materials for Strip Casting of Amorphous Alloys (비정질합금 박판 제조용 노즐 재료의 내구성평가)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.267-273
    • /
    • 2011
  • Erosion and thermal shock resistance of several refractory materials have been investigated, which are expected to be used as nozzles in a planar flow casting equipment for amorphous alloys. The test was conducted on five materials; graphite, boron nitride, fused silica, alumina and zirconia. Test specimens were preheated and dipped into the melt of carbon steel and amorphous alloys. Some test specimens were rotated to develop high erosion and to shorten the test periods. Fused silica and boron nitride specimens showed the excellent erosion and thermal shock resistance irrespective of the kind of melt and melting atmosphere.

Study on the Cavitation Damage of Cupronickel(70/30) Tube for Gas Absorption Refrigeration Machine

  • Lim, Uh-Joh;Jeong, Ki-Cheol;Yun, Byoung-Du
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.332-337
    • /
    • 2004
  • The use of gas absorption refrigeration machine has considerably increased because of the shortage of the electric power in the summer and the regulation of freon refrigerant. Gas absorption refrigeration machine consists of a condenser, a heat exchanger. supplying pipes, a radiator etc, This system is likely to be corroded by acid. dissolved oxygen and gases, Cavitation erosion-corrosion by flow velocity of cooling water may happen in absorption refrigeration machine. In these cases. erosion and corrosion occur simultaneously. Then, it makes a serious damage with synergy effect. Therefore, this paper was studied on the cavitation damage of cupronickel(70/30) tube for gas absorption refrigeration machine, In the $30^{\circ}C$ tap water, linear polarization test and anodic polarization test were carried out for copper(C1220T-OL) and cupronickel(70/30) tube. Also, cavitation erosion-corrosion behavior of cupronickel (70/30) tube was considered, The main results are as following: (1) In the linear test, the corrosion current density of cupronickel(70/30) is higher than that of copper. (2) The erosion-corrosion rate of cupronickel(70/30) displayed later tendency than that of copper by vibratory cavitation in cooling water. (3) In cooling water, the progress mechanism of erosion-corrosion rate of copper and cupronickel(70/30) follows a pattern of incubation, acceleration, attenuation and a steady state period.

Correlation study between propeller noise and cavitation erosion with inclined propeller model test (경사축 추진기 모형시험에서 추진기 소음과 캐비테이션 침식 상관관계 연구)

  • Seol, Hanshin;Paik, Bu-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.328-333
    • /
    • 2019
  • In this paper, to investigate the cavitation erosion phenomenon on the ship propeller, the correlation between the propeller noise and the cavitation intensity was analyzed. Cavitation erosion is closely related to cavitation collapsing intensity, which can be defined as the frequency and intensity of cavitation collapse. The pressure wave generated by cavitation collapse appears as a continuous acoustic pulse and this result is analyzed with the cavitation behavior to determine the relationship of the propeller noise to cavitation collapse intensity. This technique is applied to the propeller erosion test using the inclined shaft propeller model.