• Title/Summary/Keyword: Erbium:YAG laser

Search Result 17, Processing Time 0.037 seconds

Comparison of Sapphire and Germanium Fibers for Erbium : Yag Lithotripsy

  • Lee, Ho;Yoon, Ji-Wook;Jung, Young-Dae;Kim, Jee-Hyun;Ryan, Robert T.;Teichman, Joel M.H.;Welch, A.J.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.309-313
    • /
    • 2008
  • We studied the sapphire and germanium fibers to determine which optical fiber best transmits Erbium:YAG laser for intracorporeal lithotripsy. Human calculi were ablated with an Erbium:YAG laser in contact mode using two fibers. Optical outputs at the distal end of fibers were measured before and after laser lithotripsy. Upon the irradiation on the calculus with the 50 mJ and 100 mJ pulse energy, the output energy at the distal end of germanium fiber declined to approximately 50% of the input energy. For the sapphire fiber, the output energy at the distal end remained unchanged with 100 mJ input energy; however the output energy had dropped to 50% for 200 mJ input energy. In order to examine how the types of target tissue affect the fiber damage, the sapphire fiber was tested for the irradiation on soft tissue and water as well. No energy decline was observed during soft tissue and water irradiation. We also characterized ablation craters with both optical fibers. Both fibers produced similar craters on calculi in terms of depth and diameter. Sapphire fibers are better suited than germanium fibers for Erbium:YAG lithotripsy in terms of the fiber damage.

A comparison of different gingival depigmentation techniques: ablation by erbium:yttrium-aluminum-garnet laser and abrasion by rotary instruments

  • Lee, Kwang-Myung;Lee, Dong-Yeol;Shin, Seung-Il;Kwon, Young-Hyuk;Chung, Jong-Hyuk;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.201-207
    • /
    • 2011
  • Purpose: The aim of this study is to compare two different gingival depigmentation techniques using an erbium:yttrium-aluminum-garnet (Er:YAG) laser and rotary instruments. Methods: Two patients with melanin pigmentation of gingiva were treated with different gingival depigmentation techniques. Ablation of the gingiva by Er:YAG laser was performed on the right side, and abrasion with a rotary round bur on the opposite side. Results: The patients were satisfied with the esthetically significant improvement with each method. However, some pigment still remained on the marginal gingival and papilla. The visual analog scale did not yield much difference between the two methods, with slightly more pain on the Er:YAG laser treated site. Conclusions: The results of these cases suggest that ablation of the gingiva by an Er:YAG laser and abrasion with a rotary round bur is good enough to achieve esthetic satisfaction and fair wound healing without infection or severe pain. Prudent care about the gingival condition, such as the gingival thickness and degree of pigmentation along with appropriate assessment is needed in ablation by the Er:YAG laser procedure.

A comparative evaluation of $CO_2$ and erbium-doped yttrium aluminium garnet laser therapy in the management of dentin hypersensitivity and assessment of mineral content

  • Belal, Mahmoud Helmy;Yassin, Abdulaziz
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.5
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: Dentin hypersensitivity is a potential threat to oral health. Laser irradiation may provide reliable and reproducible treatment but remains controversial. The present study aimed to evaluate the effects of $CO_2$ or erbium-doped yttrium aluminium garnet (Er:YAG) laser therapy, and to assess mineral content. Methods: Eighteen human single-rooted teeth affected with advanced periodontitis were obtained. Buccal and lingual surfaces were planed to form 36 specimens. Ethylenediaminetetraacetic acid gel (24%) was applied to remove the smear layer and simulate hypersensitive teeth. The experimental groups were: group 1, control (no irradiation); group 2, $CO_2$ laser (repetitive pulsed mode, 2 W, $2.7J/cm^2$); and group 3, Er:YAG laser (slight contact mode, 40 mJ/pulse and 10 Hz). To evaluate dentinal tubule occlusion, six specimens per group (2-mm thickness) were prepared and observed using scanning electron microscopy (SEM) for calculation of the occlusion percentage. To evaluate the mineral content, six specimens per group (0.6-mm thickness) were used, and then the levels of Ca, K, Mg, Na, and P were measured by inductively coupled plasma-atomic emission spectrometry. In addition, the surface temperature of the specimens during laser irradiation was analyzed by a thermograph. Results: The SEM photomicrographs indicated melted areas around exposed dentinal tubules and a significantly greater percentage of tubular occlusion in the $CO_2$ and Er:YAG laser groups than the control, and in the Er:YAG group than the $CO_2$ laser group. In addition, no significant differences were noted among the experimental groups for the mineral elements analyzed. The $CO_2$ laser group showed an evident thermal effect compared to the Er:YAG group. Conclusions: $CO_2$ and Er:YAG laser are effective in treating dentin hypersensitivity and reducing its symptoms. However, the Er:YAG laser has a more significant effect; thus, it may constitute a useful conditioning item. Furthermore, neither $CO_2$ nor Er:YAG lasers affected the compositional structure of the mineral content.

Hair Loss Treatment Using Erbium:YAG Fractional Laser with Hair Growth-promoting Solution

  • Ahn, Dong Hyun
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.176-180
    • /
    • 2021
  • Several methods have been used to treat androgenetic hair loss, ranging from hair transplants to finasteride and minoxidil. Sometimes platelet-rich plasma injection therapy may be used to increase the satisfaction of patients who come to the hospital. However, some patients are sensitive to pain and are subjected to the inconvenience of requiring treatment after each blood sampling. The author had reported the effects of using a hair growth-promoting solution and JetpeelTM in parallel with a painless hair loss treatment method. However, the author was interested in more effective methods for patients with M-shaped or vertex hair loss who do not want to take medications or undergo hair transplant. In addition to the existing light-emitting diode therapy and electromagnetic field treatment, the author has made considered attempts to use various laser wavelength bands. However, the equipment for these methods can be expensive and are not suitable for patients who emphasize on cost-effectiveness. Therefore, the author used an existing reported method and a device based on the fractional erbium:YAG laser to provide the hair growth-promoting solution in parallel. The author chose a fractional 2940 nm-based laser device as a medium that could efficiently increase the growth phase, reduce the catagen phase, and facilitate intradermal product and drug delivery. As a result, there was a therapeutic benefit without any significant side effects such as redness and itching. Among the patients, the author reported the effects of the treatment on one patient with frontal M-shaped, mid, and vertex hair loss.

The effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double acid-etched implants

  • Kim, Ji-Hyun;Herr, Yeek;Chung, Jong-Hyuk;Shin, Seung-Il;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.234-241
    • /
    • 2011
  • Purpose: One of the most frequent complications related to dental implants is peri-implantitis, and the characteristics of implant surfaces are closely related to the progression and resolution of inflammation. Therefore, a technical modality that can effectively detoxify the implant surface without modification to the surface is needed. The purpose of this study was to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on the microstructural changes in double acid-etched implant surfaces according to the laser energy and the application duration. Methods: The implant surface was irradiated using an Er:YAG laser with different application energy levels (100 mJ/pulse, 140 mJ/pulse, and 180 mJ/pulse) and time periods (1 minute, 1.5 minutes, and 2 minutes). We then examined the change in surface roughness value and microstructure. Results: In a scanning electron microscopy evaluation, the double acid-etched implant surface was not altered by Er:YAG laser irradiation under the condition of 100 mJ/pulse at 10 Hz for any of the irradiation times. However, we investigated the reduced sharpness of the specific ridge microstructure that resulted under the 140 mJ/pulse and 180 mJ/pulse conditions. The reduction in sharpness became more severe as laser energy and application duration increased. In the roughness measurement, the double acid-etched implants showed a low roughness value on the valley area before the laser irradiation. Under all experimental conditions, Er:YAG laser irradiation led to a minor decrease in surface roughness, which was not statistically significant. Conclusions: The recommended application settings for Er:YAG laser irradiation on double acid-etched implant surface is less than a 100 mJ/pulse at 10 Hz, and for less than two minutes in order to detoxify the implant surface without causing surface modification.

The Efficacy and Safety of Ablative Fractional Resurfacing Using a 2,940-Nm Er:YAG Laser for Traumatic Scars in the Early Posttraumatic Period

  • Kim, Sun-Goo;Kim, Eun-Yeon;Kim, Yu-Jin;Lee, Se-Il
    • Archives of Plastic Surgery
    • /
    • v.39 no.3
    • /
    • pp.232-237
    • /
    • 2012
  • Background : Skin injuries, such as lacerations due to trauma, are relatively common, and patients are very concerned about the resulting scars. Recently, the use of ablative and non-ablative lasers based on the fractional approach has been used to treat scars. In this study, the authors demonstrated the efficacy and safety of ablative fractional resurfacing (AFR) for traumatic scars using a 2,940-nm erbium: yttrium-aluminum-garnet (Er:YAG) laser for traumatic scars after primary repair during the early posttraumatic period. Methods : Twelve patients with fifteen scars were enrolled. All had a history of facial laceration and primary repair by suturing on the day of trauma. Laser therapy was initiated at least 4 weeks after the primary repair. Each patient was treated four times at 1-month intervals with a fractional ablative 2,940-nm Er:YAG laser using the same parameters. Posttreatment evaluations were performed 1 month after the fourth treatment session. Results : All 12 patients completed the study. After ablative fractional laser treatment, all treated portions of the scars showed improvements, as demonstrated by the Vancouver Scar Scale and the overall cosmetic scale as evaluated by 10 independent physicians, 10 independent non-physicians, and the patients themselves. Conclusions : This study shows that ablative fractional Er:YAG laser treatment of scars reduces scars fairly according to both objective results and patient satisfaction rates. The authors suggest that early scar treatment using AFR can be one adjuvant scar management method for improving the quality of life of patients with traumatic scars.

Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants

  • Lee, Ji-Hun;Kwon, Young-Hyuk;Herr, Yeek;Shin, Seung-Il;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.135-142
    • /
    • 2011
  • Purpose: The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy levels and application times of the laser. Methods: The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy (SEM) was used to examine the surface roughness of the specimens. Results: All experimental conditions of Er:YAG laser irradiation, except the power setting of 100 mJ/pulse for 1 minute and 1.5 minutes, led to an alteration in the implant surface. SEM evaluation showed a decrease in the surface roughness of the implants. However, the difference was not statistically Significant. Alterations of implant surfaces included meltdown and flattening. More extensive alterations were present with increasing laser energy and application time. Conclusions: To ensure no damage to their surfaces, it is recommended that SLA implants be irradiated with an Er:YAG laser below 100 mJ/pulse and 1.5 minutes for detoxifying the implant surfaces.

Comparison of the effect of hand instruments, an ultrasonic scaler, and an erbium-doped yttrium aluminium garnet laser on root surface roughness of teeth with periodontitis: a profilometer study

  • Amid, Reza;Kadkhodazadeh, Mahdi;Fekrazad, Reza;Hajizadeh, Farzin;Ghafoori, Arash
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.101-105
    • /
    • 2013
  • Purpose: The present study aimed to measure root surface roughness in teeth with periodontitis by a profilometer following root planning with ultrasonic and hand instruments with and without erbium-doped yttrium aluminium garnet (Er:YAG) laser irradiation. Methods: Sixty single-rooted maxillary and mandibular teeth, extracted because of periodontal disease, were collected. The crowns and apices of the roots were cut off using a diamond bur and water coolant. The specimens were mounted in an acrylic resin block such that a plain root surface was accessible. After primary evaluation and setting a baseline, the samples were divided into 4 groups. In group 1, the samples were root planned using a manual curette. The group 2 samples were prepared with an ultrasonic scaler. In group 3, after scaling with hand instrumentation, the roots were treated with a Smart 1240D plus Er:YAG laser and in group 4, the roots were prepared with ultrasonic scaler and subsequently treated with an Er:YAG laser. Root surface roughness was then measured by a profilometer (MahrSurf M300+RD18C system) under controlled laboratory conditions at a temperature of $25^{\circ}C$ and 41% humidity. The data were analyzed statistically using analysis of variance and a t-test (P<0.05). Results: Significant differences were detected in terms of surface roughness and surface distortion before and after treatment. The average reduction of the surface roughness after treatment in groups 1, 2, 3, and 4 was 1.89, 1.88, 1.40, and 1.52, respectively. These findings revealed no significant differences among the four groups. Conclusions: An Er:YAG laser as an adjunct to traditional scaling and root planning reduces root surface roughness. However, the surface ultrastructure is more irregular than when using conventional methods.

A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System

  • Rhie, Jong Won;Shim, Jeong Su;Choi, Won Seok
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • Background The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide ($CO_2$) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Methods Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Results Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. Conclusions The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color.