Since 1990, the Renewable Big Data Research Lab at the Korea Institute of Energy Technology has been observing solar radiation at 16 sites across South Korea. Serving as the National Reference Standard Data Center for Renewable Energy since 2012, it produces essential data for the sector. By 2020, it standardized meteorological year data from 22 sites. Despite user demand for data from approximately 260 sites, equivalent to South Korea's municipalities, this need exceeds the capability of measurement-based data. In response, our team developed a method to derive solar radiation data from satellite images, covering South Korea in 400,000 grids of 500 m × 500 m each. Utilizing satellite-derived data and ERA5-Land reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), we produced standard meteorological year data for 1,000 sites. Our research also focused on data measurement traceability and uncertainty estimation, ensuring the reliability of our model data and the traceability of existing measurement-based data.
The technological development in the era of the 4th industrial revolution is changing the paradigm of various industries. Various technologies such as big data, cloud, artificial intelligence, virtual reality, and the Internet of Things are used, creating synergy effects with existing industries, creating radical development and value creation. Among them, the logistics sector has been greatly influenced by quantitative data from the past and has been continuously accumulating and managing data, so it is highly likely to be linked with big data analysis and has a high utilization effect. The modern advanced technology has developed together with the data mining technology to discover hidden patterns and new correlations in such big data, and through this, meaningful results are being derived. Therefore, data mining occupies an important part in big data analysis, and this study tried to analyze data mining techniques that can contribute to the logistics field and common logistics using these data mining technologies. Therefore, by using the AHP technique, it was attempted to derive priorities for each type of efficient data mining for logisticalization, and R program and R Studio were used as tools to analyze this. Criteria of AHP method set association analysis, cluster analysis, decision tree method, artificial neural network method, web mining, and opinion mining. For the alternatives, common transport and delivery, common logistics center, common logistics information system, and common logistics partnership were set as factors.
Through big data analysis of the 'Joseonwangjosilok', this study examines the perception of ginseng among the ruling class and its utilization during the Joseon era. It aims to provide foundational data for the development of ginseng into a high-value cultural commodity. The focus of this research, the Joseonwangjosilok, comprises 1,968 volumes in 948 books, spanning a record of 518 years. Data was collected through web crawling on the website of the National Institute of Korean History, followed by frequency analysis of significant words. To assess the interest in ginseng across the reigns of 27 kings during the Joseon era, ginseng frequency records were adjusted based on years in power and the number of articles, creating an interest index for comparative rankings across reigns. Analysis revealed higher interest in ginseng during the reigns of King Jeongjo and King Yeongjo in the 18th century, King Sunjo in the 19th century, King Sejong in the 15th century, King Sukjong in the 17th century, and King Gojong in the 19th century. Examining the temporal emergence and changes in ginseng during the Joseon era, general ginseng types like insam and sansam had the highest frequency in the 15th century. It appears that Korea adeptly utilized ceremonial goods in diplomatic relations with China and Japan, meeting the demand for ginseng from their royal and aristocratic societies. Processed ginseng varieties such as hongsam and posam, along with traded and taxed ginseng, showed peak frequency in the 18th century. This coincided with increased cultivation, allowing a higher supply and fostering the development of ginseng processing technologies like hongsam.
빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 빅데이터 분석은 소셜 빅데이터, 실시간 사물지능통신(M2M; Machine to Machine), 센서 데이터, 기업 고객관계 데이터 등 도처에 존재하는 다양한 성격의 빅데이터를 효과적으로 분석하는 것을 말한다. 빅데이터 시대에는 단순히 데이터 베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 폭발적으로 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 빅데이터를 효과적으로 분석하는 것이 무엇보다 중요해졌다. 그런데 메타분석은 여러 실증연구의 정량적인 결과를 통합과 분석을 통해 전체 결과를 조망할 기회를 제공하는 통계적 통합 방법이다. 따라서 본 연구는 우리나라에서 2000년-2017년 사이 혁신확산이론 모델을 기반으로 한 주제로 출판된 연구 50개 논문 750개 샘플을 대상으로 하였다.
With the era of big data, the big data has been expected to have a large impact in the NPP safety areas. Although high interests of the big data for the NPP safety, only a limited researches concerning this issue are revealed. Especially, researches on the logical/physical structure and systematic design methods for the big data platform for the NPP safety were not dealt with. In this research, we design a new big data pilot platform for the NPP safety especially focusing on health monitoring and early warning services. For this, we propose a tailored design process based on SE approaches to manage inherent high complexities of the platform design. The proposed design process is consist of several steps from elicitate stakeholders to integration test via define operational concept and scenarios, and system requirements, design a conceptual functional architecture, select alternative physical modules for the derived functions and assess the applicability of the alternative modules, design a conceptual physical architecture, implement and integrate the physical modules. From the design process, this paper covers until the conceptual physical architecture design. In the following paper, the rest of the design process and results of the field test will be shown.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권7호
/
pp.3714-3732
/
2019
With the rapid development of network, Intrusion Detection System(IDS) plays a more and more important role in network applications. Many data mining algorithms are used to build IDS. However, due to the advent of big data era, massive data are generated. When dealing with large-scale data sets, most data mining algorithms suffer from a high computational burden which makes IDS much less efficient. To build an efficient IDS over big data, we propose a classification algorithm based on data clustering and data reduction. In the training stage, the training data are divided into clusters with similar size by Mini Batch K-Means algorithm, meanwhile, the center of each cluster is used as its index. Then, we select representative instances for each cluster to perform the task of data reduction and use the clusters that consist of representative instances to build a K-Nearest Neighbor(KNN) detection model. In the detection stage, we sort clusters according to the distances between the test sample and cluster indexes, and obtain k nearest clusters where we find k nearest neighbors. Experimental results show that searching neighbors by cluster indexes reduces the computational complexity significantly, and classification with reduced data of representative instances not only improves the efficiency, but also maintains high accuracy.
현대 사회는 사물인터넷, 빅데이타 등으로 급속하게 발전하고 있으며 코로나 시대에도 발전하는 산업이 있다. 그러나, 교회는 코로나 시대에 발전하지 못하고 충분히 대응하지 못하고 있으며 교회의 존립 자체를 흔들고 있다. 교회의 본질은 예배, 전도, 교육, 봉사, 교제로 구성된다. 비대면의 안전을 중요시하는 코로나 시대에는 본질은 변화하지 않지만 사회적 책임감이 있게 교회의 본질을 구현하는 노력이 필요하다. 본 논문은 이러한 측면에서 교회의 5대 본질 요소를 중심으로 교회의 사회적 책임을 논한다. 이를 위해 교회의 본질적 요소를 살펴보고, 코로나 시대에 적합한 구현 방법을 연구한다.
현대 지능정보사회에서 매일 새롭게 만들어지고 유통되는 데이터의 양은 상상을 초월한다. SNS나 인터넷을 통한 데이터로부터 정부나 기업으로부터 창출되는 정보에 이르기까지 다양하다. 이러한 다양한 데이터들이 가공되지 않은 원유와 같이 무한한 가치를 지닌 채 우리 곁에 있다. 축적된 데이터에서 유용한 상관관계를 찾아내고 미래의 불확실성에 대한 예측력을 강화하기 위하여 데이터 마이닝 등을 통한 빅데이터 분석 및 활용은 현대 산업사회에서 모든 영역에 걸쳐 그 중요성이 증대되고 있다. 본 논문에서는 복잡한 현대사회가 생산해 내는 빅데이터의 효율적 관리 및 활용에 대하여 연구한다. 또한 4차 산업혁명시대에 빅데이터를 기반으로 전반적인 산업 경쟁력을 확보하기 위한 전략, 산업 간 시너지 창출 및 비용의 절감과 효과적인 적용방안에 대하여 고찰한다.
클라우드와 빅네이터의 새로운 시대에서 필요한 데이터를 방대한 데이터 풀로부터 어떻게 찾아내고 활용하느냐는 매우 중요한 일이다. 이러한 빅데이터의 시대에는 무엇보다도 방대하고도 변화무쌍한 데이터를 잘 처리하고 유용한 정보를 신속하게 획득할 수 있는 진화된 형태의 효율적 지능적 지식시스템 설계를 필요로 한다. 따라서 본 연구에서는 진화된 지능 시스템 연구의 하나로서 구조적으로 재구성될 수 있는 동적 개인적 지식네트워크를 제안하고자 한다. 작은 공간에 큰 세계를 매핑하여 효율적으로 처리할 수 있는 인간 두뇌의 기능과 이 안에서 일어나는 뉴로다이나믹스 메커니즘에 착안하여 구조적 유연성을 갖는 지능 시스템을 설계하였다. 서로 다른 네트워크의 구조적-기능적 결합이 가능하도록 개인 지식네트워크를 구조화하고 핵심 영역에 속하는 공통 노드를 찾아 결합을 하며 재구성하는 기능을 부여하였다. 또한 시스템이 재구성된 지식네트워크로부터 최적 경로를 추출하며 추출된 경로를 가지고 추론 프로세스를 진행하는 기능 갖도록 구상하였다.
본 연구의 목적은 4차산업혁명 시대의 빅데이터 분석 기술을 활용한 충청도 복지정책 변화와 중요성을 분석하고 사회적 약자를 포함한 모든 세대의 안정적 복지정책을 제안하였다. 충청도 정책 관련 빅데이터를 파이선으로 코딩하여 시각화분석 결과를 토대로 안정적인 정부 정책을 제안한다. 연구 결과 충청도 정부 정책의 키워드는 지역, 사회, 정부 및 지원, 교육, 여성 등의 순으로 확인되었으며, 지역 건강정책과 사회 복지 향상을 중심으로 복지 정책을 강화해야 한다. 향후 연구 방향은 해외사례를 비교하고, 전국적인 복지정책의 안정적인 영향에 관한 정책 제안이 필요할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.