• Title/Summary/Keyword: Er: laser

Search Result 163, Processing Time 0.024 seconds

A study on the change of root surface irradiated by Er:YAG laser (Er:YAG laser를 조사한 치근면의 변화에 관한 연구)

  • Lee, Sang-Hyun;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.303-314
    • /
    • 2002
  • This study was performed to evaluate the usability of Er:YAG laser for periodontal therapy. Forty dental root slabs ($5{\times}5{\times}2mm^3$) were prepared from human periodontally diseased extracted teeth and grouped into 4 groups: 1) control (root planing only), 2) root planing and irradiated with laser at 30mJ, 3) root planing and irradiated with laser at 60mJ, and 4) root planing and irradiated with laser at 100mJ. The root slabs were embedded in resin block before laser treatment. Er:YAG laser was irradiated under water irrigation with the tip held perpendicular to the root surface in contact mode. After Er:YAG laser irradiation or planing on the root surface, morphological changes have been observed under SEM, and the micro-hardness and Ca/P ratio were compared. 1. In the Control group, the root surface showed the directional change caused by root planing instrumentation, and the presence of smear layer, and no exposure of dentinal tubule was observed. Laser irradiated group showed surface changes with rough dentin surface of niche and depression and dentinal tubule exposure by the elimination of smear layer. 2. The micro-hardness of root surface in the laser irradiated group was higher than the control group. The higher energy output was applied, the higher micro-hardness on root surface was resulted. 3. The higher energy output was applied, the higher Ca/P ratio was observed. The higher Ca/P ratio in 60mJ group and 100mJ group was statistically significantly compared to the control group and the 30mJ group. These results suggest that Er:YAG laser irradiation on the periodontally diseased root surface could remove smear layer and increase the micro-hardness on root surface and Ca/P ratio which contribute to enhance the acid resistance of periodontally treated root surface.

The Effect of ER:YAG Laser & ER,CR:YSGG Laser on the Tissue of the Inflammation-Induced Mouse (Er:YAG 레이저와 Er,Cr: YSGG 레이저가 염증유발 마우스조직에 미치는 영향)

  • Park, Tae-Il;Lee, Hyung-Seok;Lee, Hee-Jong;Chae, Chang-Hoon;Lee, Young-Joo;Byeon, Kwang-Seob;Hong, Soon-Min;Choi, Mee-Ra;Park, Jun-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.5
    • /
    • pp.396-405
    • /
    • 2010
  • Purpose: This study was performed to find out the effects of the Er:YAG laser (Key Laser) & Er,Cr:YSGG laser (Water Laser) on inflammatory tissues. Materials and Methods: It was performed on about 20 g, 6 weeks male ICR mouses. They were grouped into the control (negative), the inflammation induced 'control'(positive), Er,Cr:YSGG laser exposured group after inducing inflammation, Er:YAG lasere exposured group after inducing inflammation each 15 mouses. The mouses were applicated 0.5% DNFB 1 cc on ear skin twice a day for 4 days until symptom expression. After laser exposure, ear tissues were extracted and defined gene expression by RT-PCR. Then, tissue staining, lymphocytes observation, electromicroscophic laboratory were carried out. Results: Interleukin-$1{\beta}$ was expressed much less in the A-laser exposed group. Interleukin-$1{\beta}$ & Tumor Necrosis Factor-${\alpha}$ were expressed 7 times lesser in the A-laser exposed group. The number of Lymphocytes related to inflammation was decreased rapidly in the A-laser exposed group in vivo. he number of cavity recovered normal was a little bigger in the A-laser exposed group after 5 days Conclusion: The expression of IL-$1{\beta}$ & TNF-${\alpha}$, hitologic change, observation with electron microscope shows that Erbium laser exposure causes lesser inflammation with A-laser rather than B-laser.

SCANNING ELECTRON MICROSCOPIC STUDY OF IMPLANT SURFACE AFTER Er,Cr:YSGG LASER IRRADIATION (Er,Cr:YSGG 레이저를 조사한 임플란트 표면의 주사전자현미경적 연구)

  • Jo, Pil-Kwy;Min, Seung-Ki;Kwon, Kyung-Hwan;Kim, Young-Jo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.454-469
    • /
    • 2006
  • Today, there is considerable evidence to support a cause-effect relationship between microbial colonization and the pathogenesis of implant failures. The presence of bacteria on implant surfaces may result in an inflammation of the peri-implant mucosa, and, if left untreated, it may lead to a progressive destruction of alveolar bone supporting the implant, which has been named as peri-impantitis. Several maintenance regimens and treatment strategies for failing implants have been suggested. Recently, in addition to these conventional tools, the use of different laser systems has also been proposed for treatment of peri-implant infections. As lasers can perform excellent tissue ablation with high bactericidal and detoxification effects, they are expected to be one of the most promising new technical modalities for treatment of failing implants. It is introduced that Er,Cr:YSGG laser, operating at 2780nm, ablates tissue by a hydrokinetic process that prevents temperature rise. We studied the change of the titanium implant surface under scanning electron microscopy after using Er,Cr:YSGG laser at various energies, irradiation time. In this study, Er,Cr:YSGG laser irradiation of implant fixture showed different effects according to implant surface. Er,Cr:YSGG laser in TPS surface with RBM not alter the implant surface under power setting of 4 Watt(W) and irradiation time of 30sec. But in TPS surface with $Ca_3P$ coating alter above power setting of 2W and irradiation time of 10sec. TPS surface with RBM showed microfracture in 4W, 30sec and TPS surface with $Ca_3P$ coating showed destruction of fine crystalline structure, melting in excess of 2W, 10sec. We concluded that proper power setting, air, water of each implant surface must be investigated and implant surface must be irradiated under the damaged extent.

Design of a Single Pulse Laser Range Finder with Er:Yb:glass Microchip Lasers (어븀:이터븀:유리 마이크로칩 레이저를 이용한 단펄스 거리측정기 설계)

  • Koh, Hae Seog;Lee, Chang Jae;Park, Choong Bum;Jeon, Hyoung Ha;Ahn, Pil Dong;Park, Do Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.295-305
    • /
    • 2018
  • We present a passively Q-switched monolithic Er:Yb:glass microchip laser developed in our lab. The microchip laser can produce pulses at 1535 nm of the 'eye-safe' wavelengths with the pulse energy of 50 uJ and the pulse width of 4-6 ns. Using the laser we also designed and developed a pulsed Er:Yb:glass microchip laser rangefinder. Expressions for background and signal power, noise, and signal-to-noise ratio are reviewed. A computer simulation was used to optimize laser power, receiver aperture, and preamplifier bandwidth for the efficient system design of the laser rangefinder. Experimental results are presented to compare with the theory.

Crystal Growth of Er:YAG and Er,Cr:YSGG for Medical Lasers

  • Yu, Young-Moon;Jeoung, Suk-Jong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.161-164
    • /
    • 1998
  • Erbium doped garnet crystals were grown by Czochralski method. Relationshipes between crystal quality and crystal growth factors such as pulling rate, rotation rate and concentration of active ions and sensitizers were investigated. Optimum pulling and rotation rate for high quality Er:YAG crystal were 1 mm/hr and 20 rpm and for Er,Cr:YSGG crystal 2-4 mm/hr and 10 rpm respectively. The size of the crystals grown was up to 20-30 mm in diameters and 95-135 mm in length. Er:YAG crystal grown under the nitrogen atmosphere was pink and transparent and Er,Cr:YSGG under the 98% {{{{ { N}_{ 2} }}}} and 2% {{{{ { O}_{2 } }}}} was dark green and transparent. Under the polarizing microscopic observations with crossed polar, striations and {211} core facets were detected. Spectroscopic properties for Er,Cr:YSGG laser rods with <111> axis, 80 mm in length and 6.3 mm in diameter for medical laser applications of 2.79 ${\mu}$m wavelength were manufactured and then laser oscillation was achieved.

  • PDF

INHIBITORY EFFECTS OF ER:YAG LASER ON THE GROWTH AND ACID PRODUCING ABILITY OF STREPTOCOCCUS MUTANS (Er:YAG 레이저 조사가 S. mutans의 성장 및 산 생성능에 미치는 영향)

  • Kim, Hee-Jin;Kook, Joong-Ki;Lee, Sang-Ho;Lee, Nan-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.660-666
    • /
    • 2003
  • The purpose of this study was to investigate the inhibitory effect of Er:YAG laser against the intraoral acid producing bacterium of S. mutans. Bacterial pellet containing S. mutans KCTC 3065 was irradiated by Er:YAG laser having a $650\;{\mu}m$ diameter beam by non-contact mode. Irradiated parameters were 50mJ, 10Hz and exposure time were 1s, 3s, 5s, 7s, 9s respectively. We obtained the following results of relative growth rate and acid-producing ability of S. mutans by culturing for 48hrs. 1. The growth rate of S. mutans was decreased in the group of laser irradiation compared to the control group(P<0.01). 2. The growth rate at laser irradiation group of 7s, 9s irradiation time was decreased significantly compared to the laser irradiation group of 1s, 3s, 5s irradiation time, until 12 hours(P<0.05). After 24 hours, all groups of laser irradiation were not found to be statistically different in each other. 3. The acid-producing ability of S. mutans was inhibited for a certain duration by irradiation of laser. In summary, the growth rate and acid producing ability of S. mutans decreased according to laser irradiation. This effect was directly related to the amount of irradiation time. These results suggested that Er:YAG laser had an growth inhibition effect on S. mutans.

  • PDF

A comparison of different gingival depigmentation techniques: ablation by erbium:yttrium-aluminum-garnet laser and abrasion by rotary instruments

  • Lee, Kwang-Myung;Lee, Dong-Yeol;Shin, Seung-Il;Kwon, Young-Hyuk;Chung, Jong-Hyuk;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.201-207
    • /
    • 2011
  • Purpose: The aim of this study is to compare two different gingival depigmentation techniques using an erbium:yttrium-aluminum-garnet (Er:YAG) laser and rotary instruments. Methods: Two patients with melanin pigmentation of gingiva were treated with different gingival depigmentation techniques. Ablation of the gingiva by Er:YAG laser was performed on the right side, and abrasion with a rotary round bur on the opposite side. Results: The patients were satisfied with the esthetically significant improvement with each method. However, some pigment still remained on the marginal gingival and papilla. The visual analog scale did not yield much difference between the two methods, with slightly more pain on the Er:YAG laser treated site. Conclusions: The results of these cases suggest that ablation of the gingiva by an Er:YAG laser and abrasion with a rotary round bur is good enough to achieve esthetic satisfaction and fair wound healing without infection or severe pain. Prudent care about the gingival condition, such as the gingival thickness and degree of pigmentation along with appropriate assessment is needed in ablation by the Er:YAG laser procedure.

WATER INDUCED MECHANICAL EFFECT ON THE DENTAL HARD TISSUE BY THE SHORT PULSED LASER

  • Kwon,Yong-Hoon;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 1998
  • One macroscopic effect in the free-running Er:YAG laser is an accumulation of microscopic effects. Understanding of the exogenous water induced mechanical effect on the dental hard tissue by the Qswitched Er:YAG laser has an important impact on the further understanding of the free-running Er:YAG laser ablation on the dental hard tissue. The Q-switched Er:YAG laser (1-$\mu$s-long pulse width) was used in the recoil pressure measurement with an aid of water-jet system and a pressure transducer. The amplitude of the recoil pressure depends on the tooth surface conditions (dry and wet) and the volume of the water upon it. Wet surfaces yielded higher recoil pressure than that of dry, surface, and as the volume of the exogenous water drop increased, the amplitude of the recoil pressure increased also.

  • PDF

Bond strength of resin cement to $CO_2$ and Er:YAG laser-treated zirconia ceramic

  • Kasraei, Shahin;Rezaei-Soufi, Loghman;Heidari, Bijan;Vafaee, Fariborz
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.296-302
    • /
    • 2014
  • Objectives: It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of $CO_2$ and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods: In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness) were assigned to 3 groups (n = 15). In control group (CNT) no laser treatment was used. In groups COL and EYL, $CO_2$ and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results: The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were $8.65{\pm}1.75$, $12.12{\pm}3.02$, and $5.97{\pm}1.14MPa$, respectively. Data showed that application of $CO_2$ and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001). The highest bond strength was recorded in the COL group (p < 0.0001). In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions: Pretreatment of zirconia ceramic via $CO_2$ and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the $CO_2$ laser treated samples.

The effect of Er:YAG laser irradiation on the surface microstructure and roughness of $TiO_2$ implant (Er:YAG 레이저 조사가 산화 티타늄 블라스팅 임플란트 표면 미세 구조 및 거칠기에 미치는 영향)

  • An, Jang-Hyuk;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.67-74
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate the effect of Er:YAG laser on microstructure and roughness of $TiO_2$ blasting implant surface. Materials and Methods: Ten $TiO_2$ blasting implant were used in this experiment. One implant was control group, and nine $TiO_2$ blasting implant surfaces were irradiated with Er:YAG laser under 100 mJ/pulse, 140 mJ/pulse, and 180 mJ/pulse condition for 1 min, 1.5 min, and 2 min respectively. Optical interferometer and scanning electron microscopy was utilized to measure roughness and microstructure of specimens. Results: The surface roughness was decreased after Er:YAG laser irradiation in all groups, but there was no significant difference. 100 mJ/pulse and 140 mJ/pulse group did not alter the $TiO_2$ blasting implant surface in SEM study while 180 mJ/pulse group altered the $TiO_2$ blasting implant surface. Implant surfaces showed melting, microfracture and smooth surface in 180 mJ/pulse group. Conclusion: Detoxification of implant surface using Er:YAG laser must be irradiated with proper energy output and irradiation time to prevent implant surface alteration.