• Title/Summary/Keyword: Er,Cr:YSGG 레이저

Search Result 11, Processing Time 0.025 seconds

THE EFFECT OF Er,Cr:YSGG IRRADIATION ON MICROTENSILE BOND STRENGTH OF COMPOSITE RESIN RESTORATION (Er,Cr:YSGG 조사가 복합레진 수복의 미세인장 결합강도에 미치는 영향)

  • Son, Jeong-Hye;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of Er,Cr:YSGG laser irradiation with hypersensitivity mode on microtensile bond strength of composite resin. Twenty extracted permanent molars were randomly assigned to six groups, according to the irradiation of Er,Cr:YSGG laser, adhesive system (Optibond FL or Clearfil SE bond) and application time of etchant (15 sec or 20 sec). Then composite resin was build up on each conditioned surface. The restored teeth were stored in distilled water at room temperature for 24 h and twelve specimens for each group were prepared. All specimens were subjected to microtensile bond strength and the fracture modes were evaluated. Also, the prepared dentin surface and laser irradiated dentin surface were examined under SEM. The results were as follows: 1. The microtensile bond strength of laser irradiated group was lower than that of no laser irradiated group. 2. Regardless of laser irradiation, the microtensile bond strength of Optibond FL was higher than that of Clearfil SE bond. And the microtensile bond strength of 20 sec etching group was higher than that of 15 sec etching group when using Optibond FL. 3. The SEM image of laser irradiated dentin surface showed prominent peritubular dentin, opened dentinal tubules and no smear layer.

AN EXPERIMENTAL STUDY ON THE EFFECT OF LASER ON SOFT TISSUE HEALING (백서에서 레이저 조사가 연조직 치유에 미치는 영향에 관한 연구)

  • Park, Young-Wook;Jang, Jae-Hyun;Kim, Jung-Hwan;Park, Jung-Min;Lee, Suk-Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.222-228
    • /
    • 2009
  • Objectives: This study is aimed to compare the wound healing processes between conventional scapel wound and Er,Cr:YSGG (Erbium,Chromium, Yttrium, Scandium, Gallium, Garnet) laser wound using experimental animals. Experimental Design: Two types of wounds were made by linear and round incisions using scalpel and Er,Cr:YSGG laser, respectively, on the thigh of Sprague-Dawley rats. Sprague-Dawley rats were serially sacrified as follows: post operative 12, 24, 48 hours, and 3, 7, 14 days. The skin wounds were grossly and microscopically analyzed during the healing period. Result: The Er,Cr:YSGG laser incision showed better wound healing for the linear incision experiment than the scapel incision. Whereas the scapel incision showed better wound healing for the round incision experiment than the Er,Cr:YSGG linear incision. As the Er,Cr:YSGG laser damage in the round incision experiment could be much increased compared with the round incision by scapel. So, the round incisions by the Er,Cr:YSGG laser were resulted in the poor wound healing compared with those by the scapel. Conclusion: The Er,Cr:YSGG laser is more favorable for the fast linear incision, while the scapel is more favorable for the modified round incision.

SCANNING ELECTRON MICROSCOPIC STUDY OF IMPLANT SURFACE AFTER Er,Cr:YSGG LASER IRRADIATION (Er,Cr:YSGG 레이저를 조사한 임플란트 표면의 주사전자현미경적 연구)

  • Jo, Pil-Kwy;Min, Seung-Ki;Kwon, Kyung-Hwan;Kim, Young-Jo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.454-469
    • /
    • 2006
  • Today, there is considerable evidence to support a cause-effect relationship between microbial colonization and the pathogenesis of implant failures. The presence of bacteria on implant surfaces may result in an inflammation of the peri-implant mucosa, and, if left untreated, it may lead to a progressive destruction of alveolar bone supporting the implant, which has been named as peri-impantitis. Several maintenance regimens and treatment strategies for failing implants have been suggested. Recently, in addition to these conventional tools, the use of different laser systems has also been proposed for treatment of peri-implant infections. As lasers can perform excellent tissue ablation with high bactericidal and detoxification effects, they are expected to be one of the most promising new technical modalities for treatment of failing implants. It is introduced that Er,Cr:YSGG laser, operating at 2780nm, ablates tissue by a hydrokinetic process that prevents temperature rise. We studied the change of the titanium implant surface under scanning electron microscopy after using Er,Cr:YSGG laser at various energies, irradiation time. In this study, Er,Cr:YSGG laser irradiation of implant fixture showed different effects according to implant surface. Er,Cr:YSGG laser in TPS surface with RBM not alter the implant surface under power setting of 4 Watt(W) and irradiation time of 30sec. But in TPS surface with $Ca_3P$ coating alter above power setting of 2W and irradiation time of 10sec. TPS surface with RBM showed microfracture in 4W, 30sec and TPS surface with $Ca_3P$ coating showed destruction of fine crystalline structure, melting in excess of 2W, 10sec. We concluded that proper power setting, air, water of each implant surface must be investigated and implant surface must be irradiated under the damaged extent.

LASER application A to Z in general dental practice (일상적 치과진료에서 레이저의 사용 A to Z)

  • Jang, Sung-Yong
    • The Journal of the Korean dental association
    • /
    • v.53 no.12
    • /
    • pp.917-925
    • /
    • 2015
  • LASER application has many advantages in the field of dentistry, however, it is not easy to apply dental LASER in general practice. Various LASER systems are in the market and it is little bit confused which LASER systems are useful. Most of all, it is important to select the appropriate LASER system to their own usage. In the present article, I introduce several LASER system such as $CO_2$, Diode, Nd:YAG, Er:YG, Er,Cr:YSGG, and its application according to specific disease criteria.

Effect of two dentin desensitizers and Er,Cr:YSGG laser for dentinal tubule occlusion (상아세관 폐쇄에 대한 2종의 상아질 지각 과민 체치제와 Er,Cr:YSGG 레이저의 효과)

  • Kim, Na-Song;Kang, Jeong-Kyung;Ryu, Jae-Jun
    • The Journal of the Korean dental association
    • /
    • v.48 no.6
    • /
    • pp.469-477
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of two dentin desensitizers and Er,Cr:YSGG laser for dentinal tubule occlusion. Twenty recently extracted single-rooted human teeth were used to obtain root dentinal fragments. The crowns were cut approximately 1mm below the cementum enamel junction(CEJ). A second cut was used to remove the apex of the root. Subsequently, a longitudinal cut was made in order to obtain 2 fragments from each root sample. The cementum from the cervical portion was removed using a high-speed diamond-coated bur in order to expose the dentin. To open dentinal tubules, forty samples were treated with 50% citric acid for 2 min and then rinsed under distilled water for 1 min. These were divided into four groups of ten samples each. The first group served as a control group. In group 2, the samples were irradiated with the Er,Cr:YSGG laser(Waterlase MD, Biolase, USA). In group 3, the samples were treated with Bisblock and ONE-STEP PLUS(Bisco, USA). In group 4, the samples were treated with Gluma comfort bond & Desensitizer(Heraeus Kulzer, Germany). All the samples were examined using Scanning electron microscopy(Hitachi, S-4700, Japan) with two different magnifications(X2000, X5000). These images were assessed by one examiner who was blind to the experimental procedure, using the index of smear layer removal. The distribution of smear layer removal grades was tested using Fisher's exact test. On the order hand, in order to evaluate the occluding effect of two dentin desensitizers and Er,Cr:YSGG laser, the number of exposed dentinal tubules was counted in each group. These were evaluated using the Kruskal-Wallis test with significance predetermined $\alpha$=0.05. There were statistically significant differences between the three groups(Er,Cr:YSGG laser, Bisblock+ONE-STEP PLUS, Gluma comfort bond & Desensitizer) and control group.

Modified laser etching technique of enamel for bracket bonding (브라켓 부착을 위한 변형된 레이저 부식법)

  • Yun, Min-Sung;Lee, Sang-Min;Yang, Byung-Ho
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.87-94
    • /
    • 2010
  • Objective: Many studies have carried out research on comparisons between laser etching and conventional etching systems to investigate methods of reinforcing shear bond strength. The purposes of this study were to assess the efficiency of bonding with erbium, chromium doped: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser etching combined with the conventional etching technique. Methods: Sixty-four sound premolars, extracted for orthodontic purposes, were randomly divided into 4 groups and treated in the following manner. First group, conventional etching of 37% phosphoric acid for 15 seconds (control); second group, 1.5 W laser etching for 10 seconds followed by conventional etching; third group, conventional etching followed by 1.5 W laser etching; fourth group, 1.5 W laser etching for 15 seconds only. We assessed the shear bond strength, the surface characteristics, and the adhesive remnant index scores between all groups. Results: Experimental groups showed higher shear bond strength than the control group. But no statistically significant differences were found between the second and third groups. Adhesive remnant scores were compared with the Kruskal-Wallis test, and no statistically significant differences were found between all groups. Conclusions: To obtain maximum shear bonding strength, a combined technique of Er,Cr:YSGG and 37% phosphoric acid is useful even though it may be inconvenient.

EFFECTS ON ER,CR:YSGG LASER ON PERI-IMPLANTITIS (임프란트 주위염에 대한 Er,Cr:YSGG 레이저 조사가 미치는 영향)

  • Choi, Sung-Lim;Kim, Jin-Hwan;Hwang, Dong-Hyeon;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.5
    • /
    • pp.428-436
    • /
    • 2008
  • For Longevity of implant, considerations of biomechanical and microbiological aspects must be done. Recently, due to the remarkable development of bone grafting procedure. Implant has been implanted into the more favorable sites but peri-implantitis resulted from periodontal bacteria may obscure the long-term prognosis. Although many different modalities have been introduced to treat the failed implant. Implant's surface and irreversible bony destruction around the implant prevents good result. After Er,Cr:YSGG (waterlase) laser using the wave-length of 2780nm has been introduced to dental field, good results have been reported. Because waterlase uses the hydrokinetic force of water. It is excellent device to detoxify the implant surface mechanically without the heat generation and damage to the implant surface. We designed to evaluate waterlase effect on the peri-implantitis has been occurred after implantation. Four beagle dogs were involved. We have made four premolar extraction in each right and left side of the lower jaw and placed two implants in the anterior of the jaw as a control and six implant were placed posterior in each socket after extraction immediately as an experimental group. We tied floss-silk in each implant to make peri-implantitis intentionally. After three months, we explored peri-implant sites on each experimental fixtures. Using waterlase laser irradiation was performed on that implantitis sites under 3W, air 30% and water 20% intensity for 2 minutes. In control group, we repositioned the flap to cover the exposed fixture without any supportive care. Three months later, we sacrificed experimental animals and extracted and preparated bone blocks with Donath and Breuner (982), Donath (988)'s methods and examined under microscope. We have obtained good re-osseointegration around fixtures after treating with waterlaser irradiation. But it was shown fibroosseointegration in the control group.

The Effect of ER:YAG Laser & ER,CR:YSGG Laser on the Tissue of the Inflammation-Induced Mouse (Er:YAG 레이저와 Er,Cr: YSGG 레이저가 염증유발 마우스조직에 미치는 영향)

  • Park, Tae-Il;Lee, Hyung-Seok;Lee, Hee-Jong;Chae, Chang-Hoon;Lee, Young-Joo;Byeon, Kwang-Seob;Hong, Soon-Min;Choi, Mee-Ra;Park, Jun-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.5
    • /
    • pp.396-405
    • /
    • 2010
  • Purpose: This study was performed to find out the effects of the Er:YAG laser (Key Laser) & Er,Cr:YSGG laser (Water Laser) on inflammatory tissues. Materials and Methods: It was performed on about 20 g, 6 weeks male ICR mouses. They were grouped into the control (negative), the inflammation induced 'control'(positive), Er,Cr:YSGG laser exposured group after inducing inflammation, Er:YAG lasere exposured group after inducing inflammation each 15 mouses. The mouses were applicated 0.5% DNFB 1 cc on ear skin twice a day for 4 days until symptom expression. After laser exposure, ear tissues were extracted and defined gene expression by RT-PCR. Then, tissue staining, lymphocytes observation, electromicroscophic laboratory were carried out. Results: Interleukin-$1{\beta}$ was expressed much less in the A-laser exposed group. Interleukin-$1{\beta}$ & Tumor Necrosis Factor-${\alpha}$ were expressed 7 times lesser in the A-laser exposed group. The number of Lymphocytes related to inflammation was decreased rapidly in the A-laser exposed group in vivo. he number of cavity recovered normal was a little bigger in the A-laser exposed group after 5 days Conclusion: The expression of IL-$1{\beta}$ & TNF-${\alpha}$, hitologic change, observation with electron microscope shows that Erbium laser exposure causes lesser inflammation with A-laser rather than B-laser.

Effects of laser-irradiated dentin on shear bond strength of composite resin (레이저 처리가 상아질과 복합 레진의 결합에 미치는 영향)

  • Kim, Sung-Sook;Park, Jong-Il;Lee, Jae-In;Kim, Gye-Sun;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.520-527
    • /
    • 2008
  • Purpose: This study was conducted to evaluate the shear bond strength of composite resin to dentin when etched with laser instead of phosphoric acid. Material and methods: Recently extracted forty molars, completely free of dental caries, were embedded into acrylic resin. After exposing dentin with diamond saw, teeth surface were polished with a series of SiC paper. The teeth were divided into four groups composed of 10 specimens each; 1) no surface treated group as a control 2) acid-etched with 35%-phosphoric acid 3) Er:YAG laser treated 4) Er,Cr:YSGG laser treated. A dentin bonding agent (Adapter Single Bond2, 3M/ESPE) was applied to the specimens and then transparent plastic tubes (3 mm of height and diameter) were placed on each dentin. The composite resin was inserted into the tubes and cured. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours and the shear bond strength was measured using a universal testing machine (Z020, Zwick, Germany). The data of tensile bond strength were statistically analyzed by one-way ANOVA and Duncan's test at ${\alpha}$= 0.05. Results: The bond strengths of Er:YAG laser-treated group was $3.98{\pm}0.88$ MPa and Er,Cr:YSGG laser-treated group showed $3.70{\pm}1.55$ MPa. There were no significant differences between two laser groups. The control group showed the lowest bond strength, $1.52{\pm}0.42$ MPa and the highest shear bond strength was presented in acid-etched group, $7.10{\pm}1.86$ MPa (P < .05). Conclusion: Laser-etched group exhibited significantly higer bond strength than that of control group, while still weaker than that of the phosphoric acid-etched group.

Clinical applcation of water laser (Er,Cr:YSGG) (물방울 레이저의 다양한 임상 적용)

  • Park, Jung-Hyun
    • The Journal of the Korean dental association
    • /
    • v.56 no.7
    • /
    • pp.385-390
    • /
    • 2018
  • Laser means "Light amplification by stimulated emission of radiation". Laser have unique characteristics according to wavelength. Wavelenth of Waterlase is 2780nm and it can be absorbed to water and hydroxyapatite. When laser is applied to some material, its temperature goes up due to laser's energy. But in dental treatment high temperature is not good for teeth. High temperature can make dental pulp and bone necrosis. Waterlase can be absorbed to water droplet, so when it burst, it can cut soft and hard tissue without raising temperature. so it is so proper to dental treatment.

  • PDF