• Title/Summary/Keyword: Equivalent wave pressure

Search Result 36, Processing Time 0.026 seconds

A Study on the Oxygen Consumption Rate and Explosion Energy of Combustible Wood Dust in Confined System - Part I: Quantification of Explosion Energy and Explosive Efficiency (밀폐계 가연성 목재분진의 폭발에너지와 산소소모율에 관한 연구 - Part I: 폭발에너지의 정량화 및 폭발효율)

  • Kim, Yun Seok;Lee, Min Chul;Lee, Keun Won;Rie, Dong Ho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.55-63
    • /
    • 2016
  • A dust explosion is a phenomenon of strong blast wave propagation involving destruction which results from dust pyrolysis and rapid oxidation in a confined space. There has been some research done to find individual explosion characteristics and common physical laws for various dust types. However, there has been insufficient number of studies related to the heat of combustion of materials and the oxygen consumption energy about materials in respect of dust explosion characteristics. The present study focuses on the relationship between dust explosion characteristics of wood dust samples and oxygen consumption energy. Since it is difficult to estimate the weight of suspended dust participating in explosions in dust explosion and mixtures are in fuel-rich conditions concentrations with equivalent ratios exceeding 1, methods for estimating explosion overpressure by applying oxygen consumption energy based on unit volume air at standard atmospheric pressure and temperature are proposed. In this study an oxygen consumption energy model for dust explosion is developed, and by applying this model to TNT equivalent model, initial explosion efficiency was calculated by comparing the results of standardized dust explosion experiments.

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Frequency-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 주파수 영역 해석)

  • Lee, Dong-Yeop;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the frequency domain. Previously, it was thought that the theory of Ursell (1949) could not be used to get the added mass and wave-making damping for short waves, however, they were obtained by applying an accurate collocation method to the theory in this study. Using the so developed numerical method, we found the added mass and wave-making damping of the circular cylinder for the entire range of the frequency. Then, the MCFR(Modulus of Complex Frequency Response) was used to locate the frequency corresponding to the local maximum of MCFR and we define it as the natural frequency. Comparing our results with the previous investigation, we found that the pressure distribution on the cylinder gets close asymptotically to that of a cylinder in infinite fluid OR close to that of the cylinder, that the approximation of the natural frequency by Lee (2008) is different from our new value only by 0.64%, and that the approximation of the heaving system by an equivalent damped harmonic oscillation is not proper by the reason that is clearly shown from the comparison of the shape of the corresponding MCFRs.

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube (슬롯관형 초음속 배기노즐의 공력소음에 관한 연구)

  • Lee, Dong-Hoon;Seto, Kunisato
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

Equivalent Circuit Modelling of FFR Transducer Array for Sonar System Design (소나 시스템 설계를 위한 FFR 트랜스듀서 어레이의 등가회로 모델링)

  • Kim, In-Dong;Choi, Seung-Soo;Lee, Haksue;Lee, Seung Woo;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.629-635
    • /
    • 2017
  • Free-Flooded Ring (FFR) transducer array for use in Sonar system can be driven with large amplitude in a wide frequency band due to its structural characteristics, in which two resonances of a ring mode (1st radial mode) and an inner cavity vibration mode occur in a low frequency band. Since its sound wave generation characteristics are not influenced by the water pressure, the FFR transducer array is widely used in the deep sea. So FFR has been recognized as a low-frequency active sound source and has received much attention ever since. In order to utilize the FFR transducer array for SONAR systems in military and industrial applications, its equivalent electric circuit model is necessary especially to design the matching circuit between the driving power amplifier and the FFR transducer array. Thus this paper proposes the equivalent electric circuit model of FFR transducer array by using measured values of parameter, and suggest the improved method of parameter identification. Finally it verifies the effectiveness of the proposed circuit model of FFR transducer array by experimental measurements.

Consequence Analysis and Risk Reduction Methods for Propulsion Test Facility (추진시험설비의 사고피해영향분석 및 리스크 감소방안)

  • Shin, Ahn-Tae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.360-366
    • /
    • 2016
  • The Propulsion Test Facilities for the development of Korea Space Launch Vehicle-II are being built, some test facilities are completed and various combustion tests are running. The Propulsion Test Facilities consists test-stand, which carries out tests for engine development model, and various sub-systems and vessels containing LOX and Jet A-1 as propellant. There are always risks of fire and explosion at the test-stand since engine development model is conducted at test-stand with real combustion test with very high pressure, mixed propellant and high energy. In this paper, in order to establish the consequence analysis and risk reduction measures in the Propulsion Test Facilities, followings are considered. 1) a propellant leak accident scenario is assumed in test-stand. 2) TNT equivalent model equation based on blast wave of the explosion was used to analyze blast overpressure and impacts. Also, technical, systematic and managemental measure is described to ensure risk reduction for propulsion test facility.

A New Development in the Theory of Slender Ships (세장선 이론의 새로운 전개)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.83-90
    • /
    • 1991
  • The method, which is introduced here, is an approximation derived by an application of the slender body theory, which has achieved a great success in the field of aeronautical engineering. However numerical results for wave resistance by this theory have been very disappointing. A slender body formulation for a ship in uniform forward motion si presented. It is based on the asymptotic expansion of the Kelvin source and the result is quite different from the existing slender ship theory developed by Vossers, Tuck and Maruo. It is equivalent to an approximation for the kernel function of the Neumann-Kelvin problem which assumes the linearized free surface condition but deals with the body boundary condition in its exact from. The velocity field and pressure distribution can be calculated simply by the differentiation of the two-dimensional velocity potential. A formula for the wave resistance of slender ships is also presented.

  • PDF

Characteristics and Comparison of 2016 and 2018 Heat Wave in Korea (2016년과 2018년 한반도 폭염의 특징 비교와 분석)

  • Lee, Hee-Dong;Min, Ki-Hong;Bae, Jeong-Ho;Cha, Dong-Hyun
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • This study analyzed and compared development mechanisms leading to heat waves of 2016 and 2018 in Korea. The European Centre for Medium-Range Weather Forecasts Reanalysis Interim (ERA Interim) dataset and Automated Surface Observing System data are used for synoptic scale analysis. The synoptic conditions are investigated using geopotential height, temperature, equivalent potential temperature, thickness, potential vorticity, omega, outgoing longwave radiation, and blocking index, etc. Heat waves in South Korea occur in relation to Western North Pacific Subtropical High (WNPSH) pressure system which moves northwestward to East Asia during summer season. Especially in 2018, WNPSH intensified due to strong large-scale circulation associated with convective activities in the Philippine Sea, and moved farther north to Korea when compared to 2016. In addition, the Tibetan high near the tropopause settled over Northern China on top of WNPSH creating a very strong anticyclonic structure in the upper-level over the Korean Peninsula. Unlike 2018, WNPSH was weaker and centered over the East China Sea in 2016. Analysis of blocking indices show wide blocking phenomena over the North Pacific and the Eurasian continent during heat wave event in both years. The strong upper-level ridge which was positioned zonally near 60°N, made the WNPSH over the South Korea stagnant in both years. Analysis of heat wave intensity (HWI) and duration (HWD) show that HWI and HWD in 2018 was both strong leading to extreme high temperatures. In 2016 however, HWI was relatively weak compared to HWD. The longevity of HWD is attributed to atmosphere blocking in the surrounding Eurasian continent.

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

A Study on Standard Ocean Lighted Buoy Type System for Real-time Ocean Meteorological Observation (실시간 해양관측을 위한 표준형 등부표용 시스템 연구)

  • Park, Sanghyun;Park, Yongpal;Bae, Dongjin;Kim, Jinsul;Park, Jongsu
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1739-1749
    • /
    • 2018
  • We propose a marine observation system using existing light buoys to observe various marine information of marine locations. Our proposed ocean observation system is composed of the existing standard light buoy type and can be easily connected to the light buoy. The proposed marine observation system measures the mean wave height, maximum wave height, mean wave height and water temperature measured in the ocean. Besides, it can measure the air pressure, temperature, wind speed and wind speed in real time. In order to measure important peaks in marine observations, 2200 peak data are collected for 10 minutes, and the collected data are subjected to spectral analysis to extract significant wave and wave period data. The developed system removes the noise by using the filter because the marine observation system attaches to the light buoy. We compare and analyze the measurement data of the existing proven floating marine observation system and the standard equivalent system developed. Also, it is proved that the data of the standard type backbone ocean observation system developed through the comparative experiment is similar to that of the existing ocean observation system.

Comprehensive Evaluation of Results of Ground Response analysis Round Robin Test (지반응답해석 Round Robin Test 결과 종합적 분석 연구)

  • Park, Du-Hee;Yoon, Jong-Ku;Park, Young-Ho;Ahn, Chang-Yoon;Kim, Jae-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.334-344
    • /
    • 2007
  • This paper performed a comprehensive evaluation of the results of the 2007 Ground Response Analysis Round Robin Test, at which 14 institutions and individuals participated. The submitted results showed significant discrepancies. The main reason for this difference has been attributed to the dispersion in the estimated shear wave velocity profiles and dynamic soil curves. It is therefore concluded that accurate evaluation of the material properties is of primary importance for reliable estimation of the ground vibration. Evaluation of the effect of the analysis method showed that the equivalent linear analysis overestimates the peak ground acceleration, but overall the results are similar to a total stress nonlinear analysis. However, the total and effective stress nonlinear analyses show distinct discrepancies, the effective stress analyses consistently resulting in a lower response due to the development of the excess pore water pressure and thus softer response.

  • PDF