• Title/Summary/Keyword: Equivalent shear stiffness

Search Result 112, Processing Time 0.022 seconds

Influence of Aging of Lead Rubber Bearing on Seismic Performance of Bridges (납고무받침의 노화가 교량의 내진성능에 미치는 영향)

  • Park, Seong-Kyu;Oh, Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.109-116
    • /
    • 2012
  • The dynamic properties of lead rubber bearings, which are used as isolator, are dependent on the main rubber's dynamic behaviors and nonlinear qualities. Rubber materials tend to undergo an aging process under the influence of mechanical or environmental factors, so they can end up inevitably facing damage. A main cause of such aging is known to be oxidization, which occurs through the heat of reaction at high temperatures. Accordingly, in this study an accelerated thermal aging test was carried out in order to compare the characteristic values of the bearings with each other before and after thermal aging occurs. As a result of this experiment, it was found that a thermal aging phenomenon could have an effect on shear stiffness, energy absorption, and equivalent damping coefficients. Furthermore, a decline in the dynamic properties of the lead rubber bearings by means of the thermal aging process was applied to an actual bridge and the effects of such thermal aging on the seismic performance of the bridge were also compared and analyzed based on numerical analysis. As a result of this analysis, it was found that the changes in the basic properties of the lead rubber bearings have a minor effect on the seismic performance of bridges.

Nonlinear Seismic Response Analysis for Shallow Soft Soil Deposits (낮은 심도의 연약지반에 대한 비선형 지진응답해석)

  • Park, Hong-Gun;Kim, Dong-Kwan;Lee, Kyung-Koo;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.1-12
    • /
    • 2010
  • This study presents a finite element analysis method that can accurately evaluate the nonlinear behaviour of structures affected by shallow soft subsoils and the soil-structure interaction. A two-dimensional finite element model that consists of a structure and shallow soft subsoil was used. The finite element model was used for a nonlinear time domain analysis of the OpenSees program. A parametric study was performed to investigate the effects of soil shear velocities, earthquake input motions, soft soil depth, and soil-structure interaction. The result of the proposed nonlinear finite element analysis method was compared with the result of an existing frequency domain analysis method, which is frequently used for addressing nonlinear soil behavior. The result showed that the frequency domain analysis, which uses equivalent secant soil stiffness and does not address the soil-structure interaction, significantly overestimated the response of the structures with short dynamic periods. The effect of the soil-structure interaction on the response spectrum did not significantly vary with the foundation dimensions and structure mass.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings (저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • This study presents application effects of hybrid seismic isolation system to realize high seismic performance for low-rise lightweight buildings through a non-linear analysis and onsite experiments. The complex seismic isolation system applied in this study is a method of mixing sliding bearing and laminated rubber bearing in order to overcome limitation of laminated rubber bearing in increasing natural period of the whole seismic isolation system. As a result of the non-linear analysis, seismic isolation buildings designed with complex seismic isolation system are safe because its maximum response displacement is within allowable design displacement even for a strong earthquake which rarely occurs and its maximum response shear is less than design seismic force. As a result of the onsite experiment, the rigidity of seismic isolation stories corresponds to approximately 95.8% of the design equivalent stiffness value. This indicates that actual properties of the whole seismic isolation system correspond to design values.

Buckling Analysis of Laminated Composite Trapezoidal Corrugated Plates (적층 복합재료 사다리꼴 주름판의 좌굴해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • This work investigates the elastic buckling characteristics of laminated composite trapezoidal corrugated plates with simply supported edges using the analytical method. In the analysis, three types of in-plane loading conditions: uniaxial, biaxial and shear loads are considered. Because it is very difficult to determine the mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated plates. The corrugated element is homogenized as an orthotropic material. The previous formulae for bending rigidities of corrugated plate are adapted in this paper. The comparisons of the proposed analytical results with those of FEA based on the shell element are made to verify the proposed analytical method. In the comparison study both the critical buckling loads and the buckling mode shapes are presented. Some numerical results are presented to check the effect of the geometric properties.

Investigation of Proper Replacement Depth for the Reinforced Earth Wall on a Soft Ground by Finite Element Analysis (유한요소해석에 의한 연약지반 상 보강토 옹벽에 대한 적정 치환깊이 검토)

  • Lee, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.153-162
    • /
    • 2007
  • For the reinforced earth wall constructed on a soft ground in parallel with replacing soft soils, the behavior of the wall according to variations of thickness and stiffness of soft layer, replacement depth, and wall height is investigated using a finite element method, in which incremental construction steps including consolidation of soft soil layer are considered. The behavior of wall is characterized by investigating displacements and settlements developing at the wall, and shear strains developing in a soil deposit. The stability of wall is, then, evaluated by comparing these values with the safety criteria determined on the basis of the literature. Based on the investigation, it is shown that the behavior of wall is influenced naturally from soft soil thickness(t), replacement depth(d) and wall height(h), but more significantly from d and h. In addition, it is also shown that the normalized replacement depth, d/h, required for the safety of wall is not influenced significantly by the variations of t and h. Consequently, it can be concluded that the proper replacement depth can be suggested in an equivalent value in terms of d/h, even for the cases where the wall height is varying with stations, but the variation is not significant.

Monotonic Loading Test for CFT Square Column-to-Beam Partially Restrained Composite Connection (CFT 각형 기둥-보 합성 반강접 접합부의 단조가력 실험)

  • Choi, Sung Mo;Park, Su Hee;Park, Young Wook;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.325-335
    • /
    • 2005
  • This study tackles the development of an improved detail of partially restrained CFT square column-to-beam connection and the evaluation of its mechanical behavior under monotonic loading. The connection is designed to strengthen shearing capacity at the bottom of the connection due to the ultimate behavior of PR-CC by its detail of the bottom connection and simplify the fabrication process. The suggested connection is the welded bottom beam flange connection(M-2) and is compared with the existing PR-CC of bolted seat angle connection(M-1). Two specimens were fabricated in actual size and tested under monotonic loading. Based on the test results, the welded bottom beam flange connection exhibited about 85% of the stiffness of steel beam. It was similar to the bolted seat angle connection and behaved as PR-CC. The specimen of the supposed connection type failed at the shear connection of web but was similar to the bolted seat angle connection until the failure. It obtained sufficient stiffness and capacity through the reinforcingsteel and the capacity and deformational ability equivalent to the full-plastic moment through the anchor inside the steel tube at the web connection. So, it can be said that the suggested connection exhibits sufficient ductile behavior.

A Study on Dynamic Pile-Soil-Structure Interactions (말뚝-지반-구조물의 동섬 상호작용 연구)

  • Lee, In-Mo;Lee, Gwan-Ho;Kim, Yong-Jin
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-52
    • /
    • 1991
  • A study of the effects of dynamic pile-soil-structure interactions on the response of super- structures, supported by group piles, are presented in this paper. The dynamic impedance functions of single pile generated by soil-pile interactions are obtained and compared among others using the methods proposed by Novak, Gazetas, and Kuhlemeyer, and using the equivalent cantilever method. Group pile effects are also considered by the following approaches : neglecting interaction effects : group efficiency ratio concept : static interaction approach . and dynamic interaction approach. The responses of a nuclear containment structure are obtained by using the elastic half-space analysis, based on the impedance functions mentioned above. Main conclusions drawn from this study are as follows : 1. The numerical results of the impedance functions calculated by each method were quite different : the Novak's was the smallest, and the Kuhlemeyer's the highest. Considering group effects, similar values in each approach were obtained for the stiffness : the difference was very big for the damping. 2. The top displacement of the structure was reduced by 20% or more by pile installations. However, the base shear force, the base moment, and the resonance frequency were increased by more than two times due to stiffening effect of the ground by pile installations. 3. Whether frequency dependant impedence functions or frequency independant functions were used, the responses of the structure were not so much affected by the choice of the impedance functions. 4. The reduction effect of the top displacement increased with the increase of the maximum ground acceleration.

  • PDF

A Proposition of Site Coefficients and Site Classification System for Design Ground Motions at Inland of the Korean Peninsula (국내 내륙의 설계 지반 운동 결정을 위한 지반 증폭 계수 및 지반 분류 체계 제안)

  • Sun Chang-Guk;Chung Choong-Ki;Kim Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.101-115
    • /
    • 2005
  • For the site characterization at two inland areas, Gyeongju and Hongsung, which represent geomorphic and geologic characteristics of inland region in Korea, in-situ seismic tests containing borehole drilling investigations and resonant column tests were peformed and site-specific seismic response analyses were conducted using equivalent linear as well as nonlinear scheme. The soil deposits in Korea were shallower and stiffer than those in western US, from which the site coefficients and site classification system in Korea were derived. Most sites were categorized as site classes C and D based on the mean shear wave velocity $(V_s)$ of the upper 30 m $(V_s30)$, ranging between 250 and 650 m/s. According to the acceleration response spectra determined from the site response analyses, the site coefficients specified in the current Korean seismic design guide underestimate the ground motion in the short-period band and overestimate the ground motion in mid-period band. These differences can be explained by the differences in the bedrock depth and the soil stiffness profile between Korea and western US. The site coefficients, $F_a$ for short-period and $F_v$ for mid-period, were re-evaluated and the site classification system, in which sites C and D were subdivided according to $V_s20,\;V_s15,\;and\;V_s10$ together with the existing $V_s30$ was introduced accounting for the local geologic conditions at inland region of the Korean peninsula. The proposed site classification system in this paper is still rudimentary and requires modification.

On the Development of the Generalized Slope Deflection Method for the Analysis and Design of Ship Structures (선체(船體) 구조(構造) 해석(解析) 및 설계(設計)를 위한 일반화(一般化) 경사(傾斜) 처짐법(法) 개발(開發)에 관한 연구(硏究))

  • Chang-Doo Jang;Seung-Soo Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.202-213
    • /
    • 1992
  • For the analysis and design of ship structures the generalized slope deflection method(GSDM) taking account of axial elongation effect as well as the bending and shearing deformation is developed. Using the span point concept, the existing slope deflection method is easy to transform the variable section to the equivalent uniform one under the bending moment and the shear force, but it is difficult to analyze the web frame with inclined members because the axial deformation effect is not considered. In the present method, the equilibrium conditions including all force components(i.e. axial force, shear force, bending moment) are formulated at the both ends of the variable section beam, such that the usual space frame stiffness equation which can be solved easily by the matrix method is derived. The accuracy and applicability of the present method is demonstrated by analyzing the ship web frame structures.

  • PDF