• Title/Summary/Keyword: Equivalent plate model

Search Result 145, Processing Time 0.049 seconds

Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method

  • Girao Coelho, Ana M.;Simoes da Silva, Luis;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.33-53
    • /
    • 2006
  • The rotational behaviour of bolted extended end plate beam-to-column connections is evaluated in the context of the component method. The full moment-rotation response is characterized from the force-deformation curve of the individual joint components. The deformability of end plate connections is mostly governed by the bending of the column flange and/or end plate and tension elongation of the bolts. These components form the tension zone of the joint that can be modelled by means of "equivalent T-stubs". A systematic analytical procedure for characterization of the monotonic force-deformation behaviour of individual T-stub connections is proposed. In the framework of the component method, the T-stub is then inserted in the joint spring model to generate the moment-rotation response of the joint. The procedures are validated with the results from an experimental investigation of eight statically loaded extended end plate bolted moment connections carried out at the Delft University of Technology. Because ductility is such an important property in terms of joint performance, particularly in the partial strength joint scenario, special attention is given to this issue.

Deformation by line heating for thin plate (박판 곡직을 위한 선 가열 시 변형 특성에 관한 연구)

  • Park, Jung-Gu;Jang, Gyeong-Bok;Jo, Si-Hun;Jang, Tae-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.282-284
    • /
    • 2005
  • The line heating methods is very widely employed to correct deformation of thin plate structures. In this study, evaluation was carried out on the temperature distribution of line heating methods using FEA and practical experiments. In FEA, heat input model was established using Tsuji's double Gaussian heat input mode. This model was verified by comparing with experimental data. Thermo elasto-plastic analysis was performed using commercial FE code, MSC/MARC. Transverse shrinkage and angular distortion were measured using 3D measuring apparatus. Based on these results, a simplified analysis method is applied by using equivalent loading method.

  • PDF

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.

Isogeometric Collocation Method to solve the strong form equation of UI-RM Plate Theory

  • Katili, Irwan;Aristio, Ricky;Setyanto, Samuel Budhi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • This work presents the formulation of the isogeometric collocation method to solve the strong form equation of a unified and integrated approach of Reissner Mindlin plate theory (UI-RM). In this plate theory model, the total displacement is expressed in terms of bending and shear displacements. Rotations, curvatures, and shear strains are represented as the first, the second, and the third derivatives of the bending displacement, respectively. The proposed formulation is free from shear locking in the Kirchhoff limit and is equally applicable to thin and thick plates. The displacement field is approximated using the B-splines functions, and the strong form equation of the fourth-order is solved using the collocation approach. The convergence properties and accuracy are demonstrated with square plate problems of thin and thick plates with different boundary conditions. Two approaches are used for convergence tests, e.g., increasing the polynomial degree (NELT = 1×1 with p = 4, 5, 6, 7) and increasing the number of element (NELT = 1×1, 2×2, 3×3, 4×4 with p = 4) with the number of control variable (NCV) is used as a comparable equivalent variable. Compared with DKMQ element of a 64×64 mesh as the reference for all L/h, the problem analysis with isogeometric collocation on UI-RM plate theory exhibits satisfying results.

THERMAL MODELING TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (정지위성 해색 촬영기의 열모델링 기술)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll;Han, Cho-Young;Kim, Byoung-Soo
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.

Efficient Methods of Prediction Incorporating Equivalent Models for Elasto-Plastic Bending Behavior of Metallic Sandwich Plates with Inner Dimpled Shell Structure (등가형상을 이용한 딤플형 금속 샌드위치 판재의 효율적 굽힘 거동 예측)

  • Seong D. Y.;Jung C. G.;Yoon S. J.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.718-724
    • /
    • 2005
  • An efficient finite element method has been introduced for analysis of metallic sandwich plates subject to bending moment. A full model 3-point bending FE-analysis shows that the plastic behavior of inner structures appears only at the load point. The unit structures of sandwich plates are defined to numerically calculate the bending stiffness and strength utilizing the recurrent boundary condition for pure bending analysis. The equivalent models with the same bending stiffness and strength of full models are then designed analytically. It is demonstrated that the results of both models are almost the same and the FE-analysis method incorporating the equivalent models can reduce the computation time effectively. The dominant collapse modes are face buckling and face yielding. Since the inner dimpled structures prevent face buckling, sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

Analysis of Cyclic Adenosine Monophosphate (cAMP) Separation via RP-HPLC (reversed-phase high-performance liquid chromatography) by the Moment Method and the van Deemter Equation (역상 크로마토그래피에서 모멘트 방법과 van Deemter 식을 이용한 고리형 아데노신 일인산의 분리특성 연구)

  • Lee, Il Song;Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.723-729
    • /
    • 2015
  • The moment analysis of cyclic adenosine monophosphate (cAMP) was performed using chromatograms that were obtained with the pulse input method from an octadecyl silica (ODS) high-performance liquid chromatography (HPLC) column. The general rate (GR) model was employed to calculate the first absolute moment and the second central moment. Three important coefficients for moment analysis, which are molecular diffusivity ($D_m$), external mass transfer coefficient ($k_f$), and intra-particle diffusivity ($D_e$), were estimated by the Wilke-Chang equation, Wilson-Geankoplis equation, and comparing van Deemter equation to theoretical plate number equation, respectively. Experiments were conducted by various conditions of flow rates, methanol volume ratio of the mobile phase, and solute concentration. After the moment analysis, results were organized by van Deemter plots. Also van Deemter coefficients were compared each other to effect $H_{ax}$, $H_f$, and $H_d$ on height equivalent to a theoretical plate (HETP, $H_{total}$). The value of intraparticle diffusion ($H_d$) was the primary factor which makes for HETP whereas external mass transfer ($H_f$) was disregardable factor.

Sound Insulation Performance of Corrugated Panels for Rail Way Vehicles (철도차량용 주름판재의 차음성능)

  • Kim, Seock-Hyun;Park, Jung-Mo
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.9-14
    • /
    • 2000
  • Sound insulation performance is investigated on the corrugated panel used for a rail way vehicle. Random incidence sound transmission loss is calculated by using the equivalent orthotropic plate model. Analysis results on several kinds of corrugated panels are in good agreement with the measured data. The analysis method is applied to predict the sound transmission loss of the corrugated panel used for Korean high speed train.

  • PDF

An Estimation of Equivalent Heat Source for Thermal Analysis of Steel Deck Bridge under Pavement Procedure (강바닥판 교량의 포장시 열영향 해석을 위한 등가열원 산정기법)

  • Chung, Heung-Jin;Yoo, Byoung-Chan;Lee, Wan-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.653-660
    • /
    • 2007
  • Since the temperature of asphalt for deck plate of steel bridge during paying procedure is relatively high as $240^{\circ}C\;to\;260^{\circ}C$, the temperature of deck plate of bridge rises mere than $100^{\circ}C$ and excessive displacement and stress could occur. In order to avoid undesirable failure of base plate and determine the optimal pavement pattern, a thorough thermal analysis is needed. General structural model which is made of beam and plate element should be modified for transient heat transfer analysis; asphalt pavement material and convection effect on surface of structure need to be added. A new technique with the Equivalent Heat Source (EHS) for numerical thermal analysis for steel bridge under thermal load of Guss asphalt pavement is proposed. Since plate/beam elements which were generally used for structural analysis for bridge cannot explain convection effect easily on plate/beam surface, EHS which is determined based on calculated temperature with convection effect is used. To verify the EHS proposed in this study, numerical analyses with plate elements are performed and the results are compared with estimated temperatures. EHS might be used for other thermal analyses of steel bridge such as welding residual stress analysis and bridge fire analysis.

A Numerically Efficient Performance Analysis of Thomson Coil Actuator of Arc Eliminators Using Equivalent Circuit Method (등가회로 법을 이용한 Thomson Coil Actuator 특성 해석)

  • Li, Wei;Lu, Jiang;Jeong, Young-Woo;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.772_773
    • /
    • 2009
  • A numerically efficient performance analysis method for Thomson coil actuator of an arc eliminator is developed by transferring the problem to an equivalent circuit model considering the distribution of eddy current in conducting plate. Through a numerical analysis, the developed method is proven to give a solution, with only 1.3% of computing time, as accurate as finite element method. The developed method is testified by comparing with FEM calculation and experiment results.

  • PDF